無論是身處學校還是步入社會,大家都嘗試過寫作吧,借助寫作也可以提高我們的語言組織能力。大家想知道怎么樣才能寫一篇比較優質的范文嗎?以下是小編為大家收集的優秀范文,歡迎大家分享閱讀。
的倍數的特征的教學反思篇一
在執教《2、5、3的倍數的特征》后,我針對本節課的教學情況進行反思。
一、跨年級學習新數學知識,知識銜接不上,不符合學生的認知規律。
雖然2、5、3的倍數的特征看起來很簡單,探究的過程可能沒有什么困難之處,但要內容讓學生學懂,首先存在知識銜接問題,整除、倍數、因數這些概念學生都從未接觸過,因此,我在課開始安排了整除、倍數、因數新概念的介紹,在我看來,這些概念比較抽象,學生一時難以掌握。
二、為了體現“容量大”,教學延堂。
備課時也參考了不少資料,大多數教學設計都是將這一內容分成兩節課來學習,一節學《2、5的倍數的特征》,一節學《3的倍數的特征》,我確定用一節課教學《2、5、3的倍數的特征》,其目的是為了體現容量大,我的設計內容多,相應的學生自學、展示、鞏固練習的時間和機會就壓縮的比較少了。而3的倍數的特征與2、5的又完全不同,學生接受起來可能會有一定的難度,最好單獨作為一課時學習。最后的環節達標測試拖堂了。
三、學生合作學習的效果較好,但展示未體現立體式。
高效課堂要充分發揮學生的主體作用,要體現學生會學,學會,在本節課上,學生合作學習的熱情高,通過展示,發現學生學懂了,總結出了2、5、3的倍數的特征,在展示環節,學生講的、板書的相互干擾,于是,我臨時安排按先后順序進行,沒體現出高效課堂的“立體式”這一特點。
的倍數的特征的教學反思篇二
3的倍數的特征比較隱蔽,學生一般想不到從“各位上數的和”去研究。上課開始先讓學生回顧舊知:2的倍數和5的倍數有什么特征?學生們發現都只要看一個數個位上的數就行了,于是很順利地設下了陷阱:“同學們,那猜猜看3的倍數有什么特征呢?猜測是一種常用的數學思考方法,讓學生猜測3的倍數有什么特征,能較好地調動學生的學習積極性。由于受2的倍數和5的倍數的特征的影響,有學生很自然猜測到“個位上是0,3,6,9的數一定是3的倍數”,還有學生猜測“個位上的數字加起來是3,6,9一定是3的倍數”,能想到這點應該說是了不起的。本課到這里都很順利,因為完全在我的預設之中。
下面進入驗證環節,先讓學生判斷自己的學號是不是3的倍數,再在這些學號中挑出個位上是0,3,6,9的數,通過交流,學生發現這些數不一定是3的倍數。學生初步發現了3的倍數的特征與2和5的倍數不同,不表現在數的個位上,那3的倍數究竟與什么有關系呢?于是進入到動手操作環節。在此基礎上,抽象成各位上數的和,是理解3的倍數特征的關鍵。
“試一試”是數學的第三步,如果一個數不是3的倍數,那么這個數各位數的和不是3的倍數,利用反例進一步證實3的倍數的特征,體現了數學的嚴謹性和數學結論的確定性。隨后設計了一系列習題,使學生得到鞏固提高。
的倍數的特征的教學反思篇三
《3 的倍數的特征》本節課的教學活動,注重學生實踐操作,展開探究活動,組織學生進行交流和探討,注重培養學生發現問題,解決問題的能力,讓學生經歷科學探索的過程,感受數學的嚴謹性和數學結論的正確性。我是從教學環節維度進行觀課的,本節課有五個環節包括:一、復習舊知,直接導入。二、自主探究,合作驗證。三、總結提升,共同驗證。四、運用結論,鞏固訓練。五、全課小結,課后延伸。每個環節環環相扣,設計合理。下面就說一下自己的想法。
趙老師先復習了2、5的倍數的特征,為這節課的學習打下了基礎。趙老師以學生原有認知為基礎,激發學生的探究欲望,利用學生剛學完“2、5的倍數的特征”遷移到“3的倍數的特征”的問題中,由此萌發疑問,激發強烈的探究欲望,因此學生很快進入問題情境,猜測、否定、反思、觀察、討論,使得大部分學生漸漸進入了探究者的角色。
本節課教師努力嘗試構建數學生態課堂,讓學生繼續利用小棒擺一擺,進而發現不止是3根、6根小棒能擺出3的倍數,9根也能“只要小棒的根數是3的倍數,擺出來的數就是3的倍數。”教師將“動手擺小棒”升級為“腦中撥計數器”,將“直觀性思維”升華為“理性思維”,通過小組交流、集體驗證,學生的探索發現離“3的倍數的特征”只有咫尺之遙。整節課讓學生經歷“動手操作——觀察發現——舉例驗證——歸納總結”的探究過程,實現課程、師生、知識等多層次的互動。
習題的設計力爭在突出重點,突破難點,遵循學生認知規律的基礎上,體現基礎性、層次性、靈活性、生活性、趣味性。本節課教師設計了3道練習題。在鞏固練習部分,第(1)、(2)題是基本題;第(3)題,教師努力拉近數學與生活的聯系。把數學和生活有機聯系起來,使學生體會到數學在現實生活中作用和價值,初步學會用數學的眼光去觀察事物、思考問題,樹立學好數學、用好數學的志趣。
在學生學習的過程中注意“學習方法”的指導,讓學生感受到掌握方法才能舉一反三,真正做到觸類旁通。最后一個環節設計了讓學生靜靜的回顧這節課的學習歷程“動手操作——觀察發現——舉例驗證——歸納總結”,使其在數學思想上做進一步的提升。
的倍數的特征的教學反思篇四
《3的倍數和特征》一課是在學生自主探究2、5的倍數的特征的基礎上進一步學習,我從學生的已有基礎出發,把復習和導入有機結合起來,通過2、5的倍數特征的復習,設置了“陷阱”,引導學生進行猜想3的倍數的特征可能是什么,從而引發認知沖突,激發學生的求知欲望,經歷新知的產生過程。
一、引發猜想,產生沖突。
前一課時,學生在發現2、5的倍數特征時,都是從個位上研究起的,所以在復習舊知時,我也特意強調了這一點。接下來我引導學生猜想3的倍數特征是什么時,不少學生知識遷移,提出:個位上是3、6、9的數應該是3的倍數;3的倍數都是奇數。提出猜想,當然需要驗證,很快就有學生在觀察百數表后提出問題:個位上是3、6、9的數只是有些是3的位數,有些不是3的倍數;有些偶數也是3的倍數,而有些奇數卻不是3的倍數。學生的第一猜想被自己否決了。既然沒有這么明顯的特征,那么在百數表里找出3的倍數,不少學生就開始了繁雜的計算,這個環節我給了他們時間慢慢去算,用意在于體會這種計算的不方便,從而去想有沒有更好的'方法去判斷一個數是否是3的倍數。
二、自主探究,建構特征
找3的倍數的特征是本節課的難點,我處理這個難點時力求體現學生是學習的主體,教師只是教學活動的組織者、指導者、參與者。整節課中,始終為學生創造寬松的學習氛圍,讓學生自主探索并掌握找一個3的倍數的特征的方法,引導學生在充分的動口、動手、動腦中自主獲取知識。
在完成100以內的數表中找出所有3的倍數后,我引導學生觀察發現3的倍數的個位可以是0~9中任何一個數字,要判斷一個數是不是3的倍數不能和判斷2、5的倍數一樣只看個位,打破了學生的認知平衡,然后我提出到底什么樣的數才是3的倍數這一問題。這個問題的解決需要借助計數器,于是我給學生準備了簡易計數器,讓學生多次撥數后,觀察算珠的個數有什么共同的特點。反應比較快的學生就有了發現:所用的算珠個數都是3的倍數。在學生提出這個猜想后,全班學生再一次進行驗證第二個猜想,這個驗證也是在突破難點,學生在驗證中掌握難點。同時,我也讓學生對比了之前所用的方法,體驗這個新方法的快捷與簡便,讓學生的印象更深刻。這個教學環節在教師的引導下克服困難,解決了力所能及的問題,達到了新的平衡,開發了學生的創新潛能。
在教學過程中讓學生自主探索,雖然用了很多時間,但我認為學生探索的比較充分,學生的收獲會更多。
三、鞏固內化,拓展提高。
在上述教學過程中,雖然每個同學只操作了一兩次,但是通過學生之間的合作交流,在教師的引導下,學生經歷了一個典型的通過不完全歸納的方法得出規律的過程。學生在這一過程中的體驗,無論是方法層面,還是思想層面均將對后繼的學習產生深刻的影響。
在初步感知3的倍數的特征后,我提出了問題:一個數,在計數器上撥出它,所用數珠的顆數是3的倍數,它就是3的倍數,對嗎?你是否認為我們研究出的結論對所有的數都適用呢?這兩個問題的提出,意義在于通過“更大的數”和“任意找”兩方面,使學生深切體驗了不完全歸納法的這一要義,同時也培養了學生縝密思考問題的意識和習慣。
的倍數的特征的教學反思篇五
心理學原理表明,新異的刺激可以引起學生的注意和興趣。在教學中,根據不同的教材和要求,采取不同的教學方法,能夠引起學生學習的興趣,有利于創設良好的課堂氣氛。
教學3的倍數特征這一課時,教師組織學生進行下列鞏固練習:
下列數中3的倍數有:()
1435451003328767488
學生利用3的倍數的特征一下子就回答了上面的問題,得到了老師的.肯定。這時我接著說:“我們來一場老師、學生打擂臺怎么樣?看誰說的3的倍數的數最多,我們看誰能考倒老師。”這時同學們興趣盎然,紛紛出題來考老師。
生:42
師:111
生:78
師:57
生:81
師:20xx
生:6891
…………
這時師故意出錯:369041
學生馬上發現了這個數不是3的倍數,師問:“你能不能改一改其中的某個數字使它成為3的倍數。”
生:“可以將1改為2。”
生:“可以將4改為5。”
生:“可以將1改為5。”
生:“可以將1改為8。”
生:“可以將4改為2”
生:“可以將4改為8”
學生回答完后,我及時提問:“你們為什么不改其中的3、6、9和0呢?”學生通過思考回答:“因為0、6、3、9每一個數都是3的倍數,所以只要改4和1這兩個數就行了。”這時我及時指出:“判斷一個數是不是3的倍數可以用篩選法來判斷,在各數位的數字中先篩去3的倍數或和為3的倍數的數字,若余下的數字之和是3的倍數,原數就是3的倍數,否則就不是。”這時我逐漸地出示下列這組數要求學生馬上判斷是否3的倍數。
56
561
5617
56178
561784
5617849
…………
這個鞏固練習,有效地調動了學生的積極性,不斷激起學生認知的內驅力,使學生在探索的過程中,主動學習、主動探索,帶來了內心的滿足感。
的倍數的特征的教學反思篇六
教學反思是對教學的一次總結和理解,通過反思,認識到教學中的不足,提升教學水平,下面是3倍數特征教學反思,我們一起來看看吧!
《3的倍數和特征》一課是在學生自主探究2、5的倍數的特征的基礎上進一步學習,我從學生的已有基礎出發,把復習和導入有機結合起來,通過2、5的倍數特征的復習,設置了“陷阱”,引導學生進行猜想3的倍數的特征可能是什么,從而引發認知沖突,激發學生的求知欲望,經歷新知的產生過程。
一、引發猜想,產生沖突。
前一課時,學生在發現2、5的倍數特征時,都是從個位上研究起的,所以在復習舊知時,我也特意強調了這一點。接下來我引導學生猜想3的倍數特征是什么時,不少學生知識遷移,提出:個位上是3、6、9的數應該是3的倍數;3的倍數都是奇數。提出猜想,當然需要驗證,很快就有學生在觀察百數表后提出問題:個位上是3、6、9的數只是有些是3的位數,有些不是3的倍數;有些偶數也是3的倍數,而有些奇數卻不是3的倍數。學生的第一猜想被自己否決了。既然沒有這么明顯的特征,那么在百數表里找出3的倍數,不少學生就開始了繁雜的計算,這個環節我給了他們時間慢慢去算,用意在于體會這種計算的不方便,從而去想有沒有更好的方法去判斷一個數是否是3的倍數。
二、自主探究,建構特征
找3的倍數的特征是本節課的難點,我處理這個難點時力求體現學生是學習的主體,教師只是教學活動的組織者、指導者、參與者。整節課中,始終為學生創造寬松的學習氛圍,讓學生自主探索并掌握找一個3的倍數的特征的方法,引導學生在充分的動口、動手、動腦中自主獲取知識。
在完成100以內的數表中找出所有3的倍數后,我引導學生觀察發現3的倍數的個位可以是0~9中任何一個數字,要判斷一個數是不是3的倍數不能和判斷2、5的倍數一樣只看個位,打破了學生的認知平衡,然后我提出到底什么樣的數才是3的.倍數這一問題。這個問題的解決需要借助計數器,于是我給學生準備了簡易計數器,讓學生多次撥數后,觀察算珠的個數有什么共同的特點。反應比較快的學生就有了發現:所用的算珠個數都是3的倍數。在學生提出這個猜想后,全班學生再一次進行驗證第二個猜想,這個驗證也是在突破難點,學生在驗證中掌握難點。同時,我也讓學生對比了之前所用的方法,體驗這個新方法的快捷與簡便,讓學生的印象更深刻。這個教學環節在教師的引導下克服困難,解決了力所能及的問題,達到了新的平衡,開發了學生的創新潛能。
在教學過程中讓學生自主探索,雖然用了很多時間,但我認為學生探索的比較充分,學生的收獲會更多。
三、鞏固內化,拓展提高。
在上述教學過程中,雖然每個同學只操作了一兩次,但是通過學生之間的合作交流,在教師的引導下,學生經歷了一個典型的通過不完全歸納的方法得出規律的過程。學生在這一過程中的體驗,無論是方法層面,還是思想層面均將對后繼的學習產生深刻的影響。
在初步感知3的倍數的特征后,我提出了問題:一個數,在計數器上撥出它,所用數珠的顆數是3的倍數,它就是3的倍數,對嗎?你是否認為我們研究出的結論對所有的數都適用呢?這兩個問題的提出,意義在于通過“更大的數”和“任意找”兩方面,使學生深切體驗了不完全歸納法的這一要義,同時也培養了學生縝密思考問題的意識和習慣。