范文為教學中作為模范的文章,也常常用來指寫作的模板。常常用于文秘寫作的參考,也可以作為演講材料編寫前的參考。范文怎么寫才能發揮它最大的作用呢?以下是小編為大家收集的優秀范文,歡迎大家分享閱讀。
勾股定理教學反思勾股定理的教后反思篇一
(1)這節課的設計思路比較合理:著重體現“探究”這一主題,從“古埃及人得到直角三角形的方法”到學生用木棒模仿操作,再到畫圖自己證明等一系列活動,得出“勾股定理逆定理”,而對互逆命題,原命題,逆命題等概念的講解只是作為新課引入的命題點化了一下,沒有詳細講解、把這節課的重點放在了如何讓學生通過三角形三邊關系判斷是否是直角三角形?在經過課堂練習及課堂檢測來強化學生對勾股定理逆定理的理解,分別從三角形的邊和角這方面來引導學生。
(2)本課ppt的使用是想凸顯“特征讓學生觀察,思路讓學生探索,方法讓學生思考,意義讓學生概括,結論讓學生驗證,難點讓學生突破,以學生為主體”的教學思路,每個環節都是緊密相接的。
(3)課堂教學環節和教學效果我感覺很滿意,學生在對問題的回答很積極,在突破難點的過程中,學生通過小組合作實驗交流,自己總結歸納勾股定理逆定理,及證明中我給與學生充分的思考時間讓學生自己完成。整個過程中體現了以學生為主,老師為主導的作用,課堂氣氛活躍,效果挺好。
本節課的不足之處及改進方法:
1、本節課我沒有及時發現學生的錯誤。在學生上黑板做題時出現的錯誤沒能及時發現及改正。
2、課堂檢測做完后應讓學生自己講解,但時間不夠導致這一環節沒能讓學生完成,而是在投影對了答案。
在以后教學中,我會不斷地更新教育理念,結合學生的認知規律、生活經驗對數教材進行再創造,選取密切聯系學生現實生活和生動有趣的數學素材,為學生提供充分的數學活動和交流的空間,真正把創造還給學生,讓學生動起來,讓課堂煥發新的活力。
勾股定理教學反思勾股定理的教后反思篇二
勾股定理的探索和證明蘊含豐富的數學思想和研究方法,是培養學生思維品質的載體。它對數學發展具有重要作用。勾股定理是一壇陳年佳釀,品之芬芳,余味無窮,以簡潔優美的形式,豐富深刻的內涵刻畫了自然界和諧統一關系,是數形結合的優美典范。
教學中我以教師為主導,以學生為主體,以知識為載體,以培養能力為重點。為學生創設“做數學、玩數學”的教學情境,讓學生從“學會”到“會學”,從“會學”到“樂學”。
我讓學生課前查閱有關勾股定理資料,學生對勾股定理歷史背景有初步了解,學生充滿自信迎接新知識《勾股定理》學習的挑戰。
學生查得資料:世界許多科學家尋找“外星人”。1820年,德國數學家高斯提出,在西伯利亞森林伐出直角三角形空地,在空地種上麥子,以三角形三邊為邊種上三片正方形松樹林,如果有外星人路過地球附近,看到這個巨大數學圖形,便知道:這個星球上有智慧生命。我國數學家華羅庚提出:要溝通兩個不同星球的信息交往,最好利用太空飛船帶上這個圖形,并發射到太空中去。
畢達哥拉斯是古希臘數學家。相傳2500年前,畢達哥拉斯在朋友家做客,發現朋友家用地磚鋪成地面反映了直角三角形三邊的數量關系。
我講畢達哥拉斯故事,提出問題。學生獨立思考,提出猜想。我配合演示,使問題形象、具體。教學活動從“數小方格”開始,起點低、趣味性濃。學生在偉人故事中進行數學問題的討論和探索。平淡無奇現象中隱藏深刻道理。
“問題是思維的起點”,一段生動有趣的動畫,點燃學生求知欲,以景激情,以情激思,引領學生進入學習情境,學生帶著問題進課堂。
盡管學生講的不完全正確,但培養了學生運用數學語言進行抽象、概括的能力,學生經歷了應用勾股定理解決問題的思考過程,學生增長了知識,學生增長了智慧。
我通過“著名問題”探究,讓學生了解勾股定理的古老與神奇。問題本身具有極大挑戰性,激發了學生強烈求知欲,激發了學生探究知識的愿望。學生討論交流,發現用代數觀點證明幾何問題的思路。我配以演示,分散了難點,培養了學生發散思維、探究數學問題的能力。
我拋磚引玉介紹趙爽弦圖,趙爽用幾何圖形截、割、拼、補證明代數恒等關系,具有嚴密性,直觀性,是中國古代以形證數、形數統一的典范。趙爽指出:四個全等直角三角形拼成一個中空的正方形,大正方形面積等于小正方形面積與4個三角形面積和。 “趙爽弦圖”表現了我國古代人對數學的鉆研精神和聰明才智,它是我國數學的驕傲。這個圖案被選為20xx年北京召開的國際數學家大會會徽。
隨后展示了美國總統證法。1876年4月1日,美國伽菲爾德在《新英格蘭教育日志》發表勾股定理的證法。1881年,伽菲爾德就任美國總統,為了紀念他直觀、簡捷、易懂、明了的證明,這一證法被稱為“總統”證法。
我感覺學生是小小發明家。學生在建構知識的同時,欣賞作品享受成功的喜悅。
練習設計我立足鞏固,著眼發展,兼顧差異,滿足學生渴望發展要求。練習有基礎訓練,變式訓練,中考試題,引出勾股樹,學生驚嘆奇妙的數學美。課內知識向課外知識延伸,打開了學生思路,給學生提供了廣闊空間。數學教學變得生機勃勃,學生喜歡數學,熱愛數學。
我讓學生講解搜集資料,豐富了學生背景知識,體現了自主學習方式。我對學生進行愛國主義教育,激發了學生民族自豪感和奮發向上學習精神。我讓學生欣賞豐富多彩的數學文化,展示五彩斑斕的文化背景,激發了學生的愛國熱情。
課堂小結是對教學內容的回顧,是對數學思想、方法的總結。我強調重點內容,注重知識體系的形成,培養了學生反思習慣。
我還想對同學們說:
牛頓——從蘋果落地最終確立了萬有引力定律
我們——從朝夕相處的三角板發現了勾股定理
雖然兩者尚不可同日而語
但探索和發現——終有價值
也許就在身邊
也許就在眼前
還隱藏著無窮的“萬有引力定律”和“勾股定理”……
祝愿同學們——
修得一個用數學思維思考世界的頭腦
練就一雙用數學視角觀察世界的眼睛
開啟新的探索——
發現平凡中的不平凡之謎……
勾股定理教學反思勾股定理的教后反思篇三
本節課的設計目的是培養學生準確地將實際問題轉化為數學問題,建立幾何模型(即直角三角形),能正確遠用勾股定理解釋生活中問題,通過運用勾股定理對實際問題的解釋和應用,進一步加強培養學生注意從身邊的事物中抽象出幾何模型(直角三角形)的能力,使學生更加深刻地認識到數學的本質:“數學來源于生活,同時又能服務于生活”,激起廣大學生對數學對生活的`熱愛。
由教材中的實例引入,讓學生猜一猜,梯的頂端下滑0.5米,問梯的底端將滑動多少米?也是滑動0.5米嗎?學生將會得出不同的反應,甚至爭論;這時教師就恰到好處地引導學生建立幾何模型(即直角三角形)再運用勾股定理解決問題,最終來驗證彼此的猜想,這樣一來,課堂氣氛特別輕松,學生解決問題的興趣也格外濃。
在探討例1、例2時都是先讓學生根據生活經驗,猜一猜結論,然后再動手建摸、驗證、質疑、討論,充分體現了學生的主體地位,學生是發現者、探索者,教師是參入學習的啟發者、協調者、激勵者,體現出了教師的主導作用。
在教學中有意識地安排一些問題讓學生多途徑思考,發現答案多種多樣,讓他們體味出教學的精彩,享受做數學的成功喜悅。
通過備課、上課后,雖然取得一定成功,但感到作為一位數學教師,要不斷地及時學習新的知識,接受新信息;不斷地及時充電、更新、常常使用詼諧幽默的語言;既要有領導者組織指導、調控能力,又要有被學生欣賞佩服的魅力;要讓學生課堂上配合你、信任你、喜歡你,只要達到了這一高度,我們才能輕松自如地駕御課堂,高效、高質、高量地完成教學預設目標。
勾股定理教學反思勾股定理的教后反思篇四
“教師教,學生聽,教師問,學生答,教師出題,學生做”的傳統教學摸模式,已嚴重阻礙了現代教育的發展。這種教育模式,不但無法培養學生的實踐能力,而且會造成機械的學習知識,形成懶惰、空洞的學習態度,形成數學的呆子,就像有的大學畢業生都不知道1平方米到底有多大?因此,《新課標》要求老師一定要改變角色,變主角為配角,把主動權交給學生,讓學生提出問題,動手操作,小組討論,合作交流,把學生想到的,想說的想法和認識都讓他們盡情地表達,然后教師再進行點評與引導,這樣做會有許多意外的收獲,而且能充分發揮挖掘每個學生的潛能,久而久之,學生的綜合能力就會與日劇增。上這節課前教師可以給學生布置任務:查閱有關勾股定理的資料(可上網查,也可查閱報刊、書籍),提前兩三天由幾位學生匯總(教師可適當指導)。這樣可使學生在上這節課前就對勾股定理歷史背景有全面的理解,從而使學生認識到勾股定理的重要性,學習勾股定理是非常必要的,激發學生的學習興趣,對學生也是一次愛國主義教育,培養民族自豪感,激勵他們奮發向上,同時培養學生的自學能及歸類總結能力。
教學方式的轉變在關注知識的形成同時,更加關注知識的應用,特別是所學知識在生活中的應用,真正起到學有所用而不是枯燥的理論知識。這一點上在新課標中體現的尤為明顯。
課堂教學中要正確地、充分地引導學生探究知識的形成過程,應創造讓學生主動參與學習過程的條件,培養學生的觀察能力、合作能力、探究能力,從而達到提高學生數學素質的目的。多媒體教學的優化組合,在幫助學生形成知識的過程中扮演著重要的角色。通過面積計算來猜想勾股定理或是通過面積割補來驗證勾股定理并不是所有的學生都是很清楚,教者可通過多媒體來演示其過程不僅使知識的形成更加的直觀化,而且可以提高學生的學習興趣。
評價對于學生來說有兩種評價的方式。一種是以他人評價為基礎的,另一種是以自我評價為基礎的。每個人素質生成都經歷著這兩種評價方式的發展過程,經歷著一個從學會評價他人到學會評價自己的發展過程。實施他人評價,完善素質發展的他人監控機制很有必要。每個人都要以他人為鏡,從他人這面鏡子中照見自我。但發展的成熟、素質的完善主要建立在自我評價的基礎上,是以素質的自我評價、自我調節、自我教育為標志的。因此要改變單純由教師評價的現狀,提倡評價主體的多元化,把教師評價、同學評價、家長評價及學生的自評相結合。
在本節課的教學中,老師可以從多方面對學生進行合適的評價。如以學生的課前知識準備是一種態度的評價,上課的拼圖能力是一種動手能力的評價,對所結論的分析是對猜想能力的一種評價,對實際問題的分析是轉化能力的一種評價等等。
勾股定理教學反思勾股定理的教后反思篇五
1、從生活出發的教學讓學生感受到學習的快樂。
在“勾股定理”這節課中,一開始引入情景:
平平湖水清可鑒,荷花半尺出水面。
忽來一陣狂風急,吹倒荷花水中偃。
湖面之上不復見,入秋漁翁始發現。
花離根二尺遠,試問水深尺若干。
知識回味:復習勾股定理及它的公式變形,然后是幾組簡單的計算。
2、走進生活:以裝修房子為主線,設計木板能否通過門框,梯子底端滑出多少,求螞蟻爬的最短距離,這些都是勾股定理應用的典型例題。
3、在教學應用勾股定理時,老是運用公式計算,學生感覺比較厭倦,為了吸引學生注意力,活躍課堂氣氛,拓寬學生思路,運用多媒體出示了一道“智慧爺爺”出的思考題:即折竹抵地問題。并且將問題用動畫的形式展現出來,不僅將問題形象化,又提高了學生的學習興趣。同時將實際的問題轉化為數學問題的過程用直觀的圖形表示,在降低難度的同時又鼓勵了學生能夠看到身邊的數學,從而做到學以致用。最后讓學生互相討論,就這樣讓學生在開放自由的情況下解決了該題,同時培養了學生之間的合作。
4、最后介紹了勾股定理的歷史,并且推薦了一些網站,讓學生下課之后進行查閱、了解。這是為了方便學生到更廣闊的知識海洋中去尋找知識寶藏,利用網絡檢索相關信息,充實、豐富、拓展課堂學習資源,提供各種學習方式,讓學生學會選擇、整理、重組、再用這些更廣泛的資源。這種對網絡資源的重新組織,使學生對知識的需求由窄到寬,有力的促進了自主學習。這樣學生不僅能在課堂上學習到知識,還讓他們有了怎樣學習知識的方法。這就達到了新課標新理念的預定目標。
通過本節課的教學,學生在勾股定理的學習中能感受“數形結合”和“轉化”的數學思想,體會數學的應用價值和滲透數學思想給解題帶來的便利;感受人類文明的力量,了解勾股定理的重要性。真正做到了先激發興趣,再合作交流,最后展示成果的自主學習。這堂課將信息技術融入課堂,有利于創設教學環境,教學模式將從以教師講授為主轉為以學生動腦動手自主研究、小組學習討論交流為主,把數學課堂轉為 “數學實驗室”,學生通過自己的活動得出結論、使創新精神與實踐能力得到了發展。不足之處:學生合作意識不強,討論氣氛不夠活躍;計算不熟練,書寫不規范。
勾股定理教學反思勾股定理的教后反思篇六
本節課是公式課,探索勾股定理和利用數形結合的方法驗證勾股定理。勾股定理是在學生已經掌握了直角三角形的有關性質的基礎上進行學習的,它揭示了一個三角形三條邊之間的數量關系,它是解直角三角形的主要根據之一,是直角三角形的一條非常重要的性質,也是幾何中最重要的定理之一,它將形與數密切聯系起來,在數學的發展中起著重要的作用,在現實世界中也有著廣泛的作用。由此可見,勾股定理是對直角三角形進一步的認識和理解,是后續學習的基礎。因此,本節內容在整個知識體系中起著重要的作用。
針對八年級學生的知識結構和心理特征,本節課的設計思路是引導學生‘做’數學”,選用“引導探究式”教學方法,先由淺入深,由特殊到一般地提出問題,接著引導學生通過實驗操作,歸納驗證,在學生的自主探究與合作交流中解決問題,這樣既遵循了學生的認知規律,又充分體現了“學生是數學學習的主人、教師是數學學習的組織者、引導者與合作者”的教學理念。通過教師引導,學生動手、動腦,主動探索獲取新知,進一步理解并運用歸納猜想,由特殊到一般,數形結合等數學思想方法解決問題。同時讓學生感悟到:學習任何知識的最好方法就是自己去探究。
本節課采用的教學流程是:創設情境→激發興趣→提出問題→故事場景→發現新知→深入探究→網絡信息→規律猜想→數字驗證→拼圖效果→實踐應用→拓展提高→回顧小結→整體感知等環節共六個活動來完成教學任務的。在這一過程中,讓學生經歷了知識的發生、形成和發展的過程,讓學生體會到觀察、猜想、歸納、驗證的思想和數形結合的思想,從而更好地理解勾股定理,應用勾股定理,發展學生應用數學的意識與能力,增強了學生學好數學的愿望和信心。
本節課中的學生對用地磚鋪成的地面的觀察發現,計算建立在直角三角形斜邊上的正方形面積,對直角三角形三邊關系的發現,自我小結等,都給學生提供了充分的表達和交流的機會,發展了語言表達和概括能力,增強了合作意識。由展示生活圖片,感受生活中直角三角形的應用,引導學生將生活圖形數學化。感受到生活中處處有數學。由實際問題:工人師傅要做出一個直角三角形支架,一般會怎么做?引導學生思考:直角三角形的三邊除了我們已知的不等關系以外,是不是還存在著我們未知的等量關系呢?調動學生的學習熱情,激發學生的學習愿望和參與動機。由學生觀察地磚鋪成的地面,分別以圖中的直角三角形三邊為邊向外作正方形,求出這三個正方形的面積,尤其計算建立在直角三角形斜邊上的正方形面積。
這樣學生通過正方形面積之間的關系主動建立了由形到數,由數到形的聯想,同時也初步感受到對于直角三角形而言,三邊滿足兩直角邊的`平方和等于斜邊的平方。這樣的設計有利于學生參與探索,感受數學學習的過程,也有利于培養學生的語言表達能力,體會數形結合的思想。
得出結論后,還要引導學生用符號語言表示勾股定理,如符號語言:rt△abc中,∠c=90,ac2+bc2=ab2(或a2+b2=c2),因為將文字語言轉化為數學語言是數學學習的一項基本能力。其次,介紹“勾,股,弦”的含義,進行點題,并指出勾股定理只適用于直角三角形;最后介紹古今中外對勾股定理的研究,這樣可讓學生更好地體會勾股定理的豐富內涵與文化背景,陶冶情操,豐富自我,從中得到深層次的發展。
勾股定理教學反思勾股定理的教后反思篇七
1。讓學經歷探究、測量、拼圖、發現、驗證應用的過程,讓學生感受數形結合、轉化和從特殊到一般的數學思想。
2。通過動手操作、小組合作、共同思考探索勾股定理證明的過程,讓學生掌握數學圖形的割補技巧和代數恒等關系在幾何中的靈活運用。
1。讓學生體驗探究的樂趣,培養學生解決問題能力和克服苦難的決心,感悟數與形之間的美妙結合,激發學生學習數學的自信心。
2。通過介紹勾股定理的歷史小故事,增強學生的民族自豪感,激發學生努力學習的意志。
勾股定理教學反思勾股定理的教后反思篇八
本節課是公式課,探索勾股定理和利用數形結合的方法驗證勾股定理。勾股定理是在學生已經掌握了直角三角形的有關性質的基礎上進行學習的,它揭示了一個三角形三條邊之間的數量關系,它是解直角三角形的主要根據之一,是直角三角形的一條非常重要的性質,也是幾何中最重要的定理之一,它將形與數密切聯系起來,在數學的發展中起著重要的作用,在現實世界中也有著廣泛的作用.由此可見,勾股定理是對直角三角形進一步的認識和理解,是后續學習的基礎。因此,本節內容在整個知識體系中起著重要的作用。
針對八年級學生的知識結構和心理特征,本節課的設計思路是引導學生‘做’數學”,選用“引導探究式”教學方法,先由淺入深,由特殊到一般地提出問題,接著引導學生通過實驗操作,歸納驗證,在學生的自主探究與合作交流中解決問題,這樣既遵循了學生的認知規律,又充分體現了“學生是數學學習的主人、教師是數學學習的組織者、引導者與合作者”的教學理念.通過教師引導,學生動手、動腦,主動探索獲取新知,進一步理解并運用歸納猜想,由特殊到一般,數形結合等數學思想方法解決問題。同時讓學生感悟到:學習任何知識的最好方法就是自己去探究。
本節課采用的教學流程是:創設情境→激發興趣→提出問題→故事場景→發現新知→深入探究→網絡信息→規律猜想→數字驗證→拼圖效果→實踐應用→拓展提高→回顧小結→整體感知等環節共六個活動來完成教學任務的。在這一過程中,讓學生經歷了知識的發生、形成和發展的過程,讓學生體會到觀察、猜想、歸納、驗證的思想和數形結合的思想,從而更好地理解勾股定理,應用勾股定理,發展學生應用數學的意識與能力,增強了學生學好數學的愿望和信心。
本節課中的學生對用地磚鋪成的地面的觀察發現,計算建立在直角三角形斜邊上的正方形面積,對直角三角形三邊關系的發現,自我小結等,都給學生提供了充分的表達和交流的機會,發展了語言表達和概括能力,增強了合作意識。由展示生活圖片,感受生活中直角三角形的應用,引導學生將生活圖形數學化。感受到生活中處處有數學。由實際問題:工人師傅要做出一個直角三角形支架,一般會怎么做?引導學生思考:直角三角形的三邊除了我們已知的不等關系以外,是不是還存在著我們未知的等量關系呢?調動學生的學習熱情,激發學生的學習愿望和參與動機。由學生觀察地磚鋪成的地面,分別以圖中的直角三角形三邊為邊向外作正方形,求出這三個正方形的面積,尤其計算建立在直角三角形斜邊上的正方形面積。
這樣學生通過正方形面積之間的關系主動建立了由形到數,由數到形的聯想,同時也初步感受到對于直角三角形而言,三邊滿足兩直角邊的平方和等于斜邊的平方。這樣的設計有利于學生參與探索,感受數學學習的過程,也有利于培養學生的語言表達能力,體會數形結合的思想。
得出結論后,還要引導學生用符號語言表示勾股定理,如符號語言:rt△abc中,∠c=90,ac2+bc2=ab2(或a2+b2=c2),因為將文字語言轉化為數學語言是數學學習的一項基本能力。其次,介紹“勾,股,弦”的含義,進行點題,并指出勾股定理只適用于直角三角形;最后介紹古今中外對勾股定理的研究,這樣可讓學生更好地體會勾股定理的豐富內涵與文化背景,陶冶情操,豐富自我,從中得到深層次的發展。
勾股定理教學反思勾股定理的教后反思篇九
①、我根據學生實際情況認真備課這節課,書本總共兩個例題,且兩個例題都很難,如果一節課就講這兩題難題,那一方面學生的學習效率會比較低,另一方面會使學生畏難情緒增加。所以,我簡化教材,使教材易于操作,讓學生易于學習,有利于學生學習新知識、接受新知識,降低學習難度。
把教材讀薄,
②、除了備教材外,還備學生。從教案及授課過程也可以看出,充分考慮到了學生的年齡特點:對新事物有好奇心,但對新知識的鉆研熱情又不夠高,這樣,造成教學難度較大,為了改變這一狀況,在處理教材時,把某些數學語言轉換成通俗文字來表達,把難度大的運用能力降低為難度稍細的理解能力,讓學生樂于面對奧妙而又有一定深度的數學,樂于學習數學。
③、新課選用的例子、練習,都是經過精心挑選的,運用性強,貼近生活,與生活實際緊密聯系,既達到學習、鞏固新知識的目的,同時,又充分展現出數學教學的重大特征:數學源于生活實際,又服務于生活實際。勾股定理源于生活,但同時它又能極大的為生活服務。
④、使用多媒體進行教學,使知識顯得形象直觀,充分發揮現代技術作用。
課前,我們也去查閱了一些資料,關于勾股定理的證明以及有關的一些應用,通過這節課,真真發現勾股定理真真來源于生活,我們的幾何圖形和幾何計算對于勾股定理來說非常廣泛,而且以后更要用好它。對于勾股定理都應用時,我覺得關鍵是找到相關的三角形,并且分清直角邊或斜邊,靈活機智地進行計算和一些推理。另外與同學間在數學課上有自主學習的機會,有相互之間的討論、爭辯等協作的機會,在合作學習的過程中共同提高我覺得都是難得的機會。鍛煉了能力,提高了思維品質,并且勾股定理的應用中我覺得圖形很美,古代的數學家已經有了很好的研究并作出了很大的貢獻,現代的藝術家們也在各方面用到很多,同時在課堂中漸漸地培養了我們的數學興趣和一定的思維能力。
不過課堂上老師在最后一題的畫圖中能放一放,讓我們有時間去思考怎么畫,那會更好些,自然思維也得到了發展。課上老師鼓勵我們嘗試不完善的甚至錯誤的意見,大膽發表自己的見解,體現了我們是學習的主人。數學課堂里充滿了智慧。