教學工作計劃可以幫助教師提前安排好教學內容和時間,提高教學的有效性和針對性。教學工作計劃范文10:關注學生的身心健康和全面發展,促進學生的綜合素質提升。
八年級數學勾股定理教案(熱門14篇)篇一
一、學情分析:
知識技能基礎:學生在小學已經學過分數的乘除法,掌握了分數的乘除法法則,在學習分式的乘除法法則時可通過與分數的乘除法法則進行類比學習。在前面學習了整式乘法和因式分解,為分式的運算和結果的化簡奠定基礎。
能力基礎:在過去的數學學習過程中,學生已初步具備觀察、分析、歸納的能力和類比的學習方法。
二、教學目標:
知識目標:1、分式的乘除運算法則。
2、會進行簡單的分式的乘除法運算。
能力目標:1、類比分數的乘除運算法則,探索分式的乘除運算法則。
2、能解決一些與分式有關的簡單的實際問題。
情感目標:1、通過師生討論、交流,培養學生合作探究的意識和能力。
2、培養學生的創新意識和應用意識。
三、教學重點、難點。
重點:分式乘除法的法則及應用。
難點:分子、分母是多項式的分式的乘除法的運算。
三、教學過程:
第一環節復習舊知識。
復習小學學的分數乘除法法則,
活動目的:
復習小學學過的分數的乘除法運算,為學習分式乘除法的法則做準備。
第二環節引入新課。
活動內容。
你能總結分式乘除法的法則嗎?與同伴交流。
分式的乘除法的法則:。
兩個分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母;。
兩個分式相除,把除式的分子和分母顛倒位置后再與被除式相乘.
活動目的:
讓學生觀察運算,通過小組討論交流,并與分數的乘除法的法則類比,讓學生自己總結出分式的乘除法的法則。
第三環節知識運用。
活動內容。
例題1:。
(1)(2)例題2。
(1)(2)活動目的:
通過例題講解,使學生會根據法則,理解每一步的算理,從而進行簡單的分式的乘除法運算,并能解決一些與分式有關的簡單的實際問題,增強學生代數推理的能力與應用意識。需要給學生強調的是分式運算的結果通常要化成最簡分式或整式,對于這一點,很多學生在開始學習分式計算時往往沒有注意到結果要化簡。
第四環節走進中考。
(2012.漳州)第五環節課時小結。
活動內容:
1.分式的乘除法的法則。
2.分式運算的結果通常要化成最簡分式或整式.
3.學會類比的數學方法。
第六環節當堂檢測。
文檔為doc格式。
八年級數學勾股定理教案(熱門14篇)篇二
我對本節課的教學過程是這樣設計的:
1、欣賞圖片,激發興趣。
通過欣賞xxxx年在我國北京召開的國際數學家大會的會徽圖案,引出“趙爽弦圖”,讓學生了解我國古代輝煌的數學成就,引入課題。
接下來,讓學生欣賞傳說故事:相傳25前,畢達格拉斯在朋友家做客時,發現朋友家用磚鋪成的地面中反映了直角三角形三邊的某種數量關系。通過故事使學生明白:科學家的偉大成就多數都是在看似平淡無奇的現象中發現和研究出來的;生活中處處有數學,我們應該學會觀察、思考,將學習與生活緊密結合起來。
這樣,一方面激發學生的求知欲望,另一方面,也對學生進行了學習方法指導和解決問題能力的培養。
2、分析探究,得出猜想。
通過對地板圖形中的等腰直角三角形到一般直角三角形中三邊關系的探究,讓同學們體驗由特殊到一般的探究過程,學習這種研究方法。
在這一過程中,學生充分利用學具去嘗試解決,力求讓學生自己探索,先在小組內交流,然后在全班交流,盡量學習更多的方法。
3、拼圖證明,得出定理。
先了解趙爽的證明思路,然后讓學生利用學具自己剪拼,并利用圖形進行證明。
由于難度比較大,組織學生開展小組合作學習。教師要巡回輔導,給予學生必要的幫助。
4、反思歸納,總結升華。
一是讓學生自己回顧總結本節的收獲。(當然多數為具體的知識和方法)。二是教師要引導學生學習科學家敏銳的觀察力和勤于思考的作風,不斷提高自己的數學素養,適時對大家進行思想教育。
5、練習鞏固。
主要練習勾股定理的其它證明方法。
6、作業設計。
請你利用網絡資源,收集有關勾股定理的證明方法來進行學習。寫出有關勾股定理知識的小論文。一個月過去了,我已忘記了這一項特殊的作業,但部分學生卻寫出了出乎意料的小論文。
通過這節課的兩種不同的上法,以及學生的不同表現與收獲,讓我更深刻地認識到:
(3)要相信學生的能力,為學生創造自我學習和創造的機會(如布置開放性的學習任務:數學實踐活動、研究學習、寫小論文等)。
我相信:只要堅持不懈地這樣去做,不但能很好地實施新課改,實現教育的本來目標,而且也一定能讓學生“考出”好的成績;不過,這樣教師一定不會輕松。
八年級數學勾股定理教案(熱門14篇)篇三
今后的教學中:
(1)立足教材,鉆研教學大綱的要求;試卷中較多題目是根據課本的題目改編而來,從學生的考試情況來看課本的題目掌握不理想,這說明在平時的教學中對書本的重視不夠,過多地追求課外題目的訓練,但忽略學生實實在在地理解課本知識,提高思維能力。課堂上盡量把課堂還給學生,讓學生積極參與到課堂中,多機會給學生展示,表演,講題,把思路和方法講出來,使學生更清淅地理解題目,提升自己對數學的理解。多點讓學生獨立思考,發現問題,解決問題。
(2)注重培養學生良好的學習習慣。
(3)加強例題示范教學,培養學生解題書寫表達。
(4)多一些數學方法、數學思想的滲透,少一些知識的生搬硬套。
(5)在數學教學過程中,課堂上系統地對數學知識進行整理、歸納、溝通知識間的內在聯系,形成縱向、橫向知識鏈,從知識的聯系和整體上把握基礎知識。
(6)針對學生的兩極分化,加強課外作業布置的針對性。讓每個學生課外有適合的作業做,對不同層次的學生布置不同難度的作業,提高課外學習的效率,減輕學生課外作業的負擔。正確看待學生學習數學的差異,克服兩極分化。數學課堂上多考慮、關照中下生,讓他們在數學課堂上聽得進,肯用手。
(7)教師在平時的課堂教學中必須致力于改變教師的教學行為和學生的學習方式,加強學法指導,提高學生的閱讀能力,平時培養學生的自學能力,使學生實實在在地理解課本知識,提高思維能力。平時要關注課本、關注運算能力、關注教學中的薄弱環節。
八年級數學勾股定理教案(熱門14篇)篇四
今天聽了馬牧池中學吉老師的一節課和薛校長的報告學到了很多東西,特別是在小組合作學習方面。吉老師的這節課勾股定理是節很難講的一節課,吉老師從知識的形成過程讓學生知道了勾股定理是怎么來的`,從而鍛煉了學生的思維能力。在平時的學習過程中吉老師也很注意及時的總結規律性的東西。特別是在小組方面的問題比如有的學生之間的差異比較大,他們會對同步進行分布置任務。每節課他們都會有課堂達標的小測驗,學校也會進行抽測。
薛校長的報告從很多的實際介紹了他們的經驗。要夯實自主學習,給學生自主學習的時間。我們要把臺階難度要都設的小一點,讓學生都能參入進來從而讓他們體會到學習的樂趣。我們還要給學生充分的自主學習的時間和空間。只有他們把問題討論清楚了以后再遇到他們才能找到頭緒。我們在課堂上要注重追問,注重互助,探究結論的形成過程。
通過這次的學習以后在自己的課堂中要注意這些問題,真正培養起學生的邏輯思維能力來。
八年級數學勾股定理教案(熱門14篇)篇五
教學。
目標(含重點、難點)及。
設置依據教學目標。
1、了解多面體、直棱柱的有關概念.2、會認直棱柱的側棱、側面、底面.。
3、了解直棱柱的側棱互相平行且相等,側面是長方形(含正方形)等特征.。
教學重點與難點。
教學過程。
內容與環節預設、簡明設計意圖二度備課(即時反思與糾正)。
一、創設情景,引入新課。
析:學生很容易回答出更多的答案。
師:(繼續補充)有許多著名的建筑,像古埃及的金字塔、巴黎的艾菲爾鐵塔、美國的迪思尼樂園、德國的古堡風光,中國北京的西客站,它們也是由不同的立體圖形組成的;那么立體圖形在生活中有著怎樣的廣泛的應用呢?瞧,食物中的冰激凌、櫻桃、端午節的粽子等。
二、合作交流,探求新知。
1.多面體、棱、頂點概念:
2.合作交流。
師:以學習小組為單位,拿出事先準備好的幾何體。
學生活動:(讓學生從中閉眼摸出某些幾何體,邊摸邊用語言描。
述其特征。)。
師:同學們再討論一下,能否把自己的語言轉化為數學語言。
學生活動:分小組討論。
說明:真正體現了“以生為本”。讓學生在主動探究中發現知識,充分發揮了學生的主體作用和教師的主導作用,課堂氣氛活躍,教師教的輕松,學生學的愉快。
師:請大家找出與長方體,立方體類似的物體或模型。
析:舉出實例。(找出區別)。
師:(總結)棱柱分為之直棱柱和斜棱柱。(根據其側棱與底面是否垂直)根據底面多邊形的邊數而分為直三棱柱、直四棱柱……直棱柱有以下特征:
有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;
側面都是長方形含正方形。
長方體和正方體都是直四棱柱。
3.反饋鞏固。
完成“做一做”
析:由第(3)小題可以得到:
直棱柱的相鄰兩條側棱互相平行且相等。
4.學以至用。
出示例題。(先請學生單獨考慮,再作講解)。
析:引導學生著重觀察首飾盒的側面是什么圖形,上底面是什么圖形,然后與直棱柱的特征作比較。(使學生養成發現問題,解決問題的創造性思維習慣)。
最后完成例題中的“想一想”
5.鞏固練習(學生練習)。
完成“課內練習”
三、小結回顧,反思提高。
師:我們這節課的重點是什么?哪些地方比較難學呢?
合作交流后得到:重點直棱柱的有關概念。
直棱柱有以下特征:
有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;
側面都是長方形含正方形。
例題中的把首飾盒看成是由兩個直三棱柱、直四棱柱的組合,或著是兩個直四棱柱的組合需要一定的空間想象能力和表達能力。這一點比較難。
板書設計。
作業布置或設計作業本及課時特訓。
八年級數學勾股定理教案(熱門14篇)篇六
一、教學目的:
1、掌握菱形概念,知道菱形與平行四邊形的關系;
3、通過運用菱形知識解決具體問題,提高分析能力和觀察能力;
4、根據平行四邊形與矩形、菱形的從屬關系,通過畫圖向學生滲透集合思想;
二、重點、難點。
1、教學重點:菱形的性質1、2;
2、教學難點:菱形的性質及菱形知識的綜合應用;
三、例題的意圖分析。
四、課堂引入。
1、(復習)什么叫做平行四邊形?什么叫矩形?平行四邊形和矩形之間的關系是什么?
《18、2、2菱形》課時練習含答案;
5、在同一平面內,用兩個邊長為a的等邊三角形紙片(紙片不能裁剪)可以拼成的四邊形是()。
a、矩形b、菱形c、正方形d、梯形。
答案:b。
知識點:等邊三角形的性質;菱形的判定。
解析:
分析:此題主要考查了等邊三角形的性質,菱形的定義、
6、用兩個邊長為a的等邊三角形紙片拼成的四邊形是()。
a、等腰梯形b、正方形c、矩形d、菱形。
答案:d。
知識點:等邊三角形的性質;菱形的判定。
解析:
分析:本題利用了菱形的概念:四邊相等的四邊形是菱形、
《菱形的性質與判定》練習題。
一選擇題:
1、下列四邊形中不一定為菱形的是()。
a、對角線相等的平行四邊形b、每條對角線平分一組對角的四邊形。
c、對角線互相垂直的平行四邊形d、用兩個全等的等邊三角形拼成的四邊形。
2、下列說法中正確的是()。
a、四邊相等的四邊形是菱形。
b、一組對邊相等,另一組對邊平行的四邊形是菱形。
c、對角線互相垂直的四邊形是菱形。
d、對角線互相平分的四邊形是菱形。
3、若順次連接四邊形abcd各邊的中點所得四邊形是菱形,則四邊形abcd一定是()。
a、菱形b、對角線互相垂直的四邊形c、矩形d、對角線相等的四邊形。
八年級數學勾股定理教案(熱門14篇)篇七
活動目標:
1、認知目標:理解二等分的含義,學習二等分的方法。
2、操作目標:通過操作探索出不同的方法給圖形二等分,體驗等分中的包含關系、等量關系。
3、能力目標:探索對不同圖形進行二等分。
發散點:
運用不同的等分線對圖形進行等分。
活動準備:
正方形彩色紙片若干、多項操作學具、棋盤若干,記錄單,剪刀,鉛筆、手偶。
活動過程:
(一)等分圖形。
1、以情景引入。結合大班幼兒的年齡特點,創設了這個問題情境,吸引幼兒參與活動的同時,也能夠更加生活化地展現生活的數學,更加易于幼兒的理解。
(1)出示手偶:“你們看誰來了?”幼兒:“是平平姐姐。”
(2)以手偶表演,教師問:“平平姐姐今天怎么不高興了,有什么煩惱嗎?”平平(教師扮):“今天早上吃早點,我發現只有一片面包片了,可是我要和盈盈一起來分享,小朋友,你們快幫我想想我該怎么辦呢?”
(3)師:“誰想到好辦法了?”幼兒:“把面包片分成兩份不就行了嗎!”
(4)平平(教師扮):“可是分完了會有大有小,怎么辦?”
(5)教師出示正方形的彩色紙片,提問:“面包片是什么形狀的?”幼兒:“正方形的。”教師:“那我們就用正方形的紙來代替面包片幫平平姐姐來分成兩塊一樣大的!”
2、提供幼兒正方形紙和剪刀,請幼兒操作。提供給幼兒嘗試的機會,驗證自己的想法,并可以不受限制地嘗試各種二等分的方法,用剪刀將其剪開的方法便于幼兒驗證兩部分是否相等。
3、小結:
(1)師:“你把正方形分成了幾塊什么形狀,你是怎樣分的?”
(2)師:“有幾種分的方法”(對角和對邊折)。
(3)師:“怎樣證明這兩塊一樣大呢?”(比一比)。
(4)師:“怎樣分才能一樣大呢?”
(5)教師于幼兒共同總結:只要找到了中心線,就可以將一個分成兩個一樣大的。進一步引導幼兒掌握二等分的關鍵要點。
(二)運用學具進一步探索。只用紙來等分,以現階段幼兒的年齡特點所致,比較精確的二等分方法只有對角和對邊折兩種,運用學具,抓住學具有洞洞點的特點,可以讓幼兒進一步嘗試以各種折線為中心線進行正方形的二等分,并且能夠保證精確性。促進幼兒發散性思維的發展,是幼兒在明確等分要求的.基礎上自由地嘗試二等分的多種方法。此環節更加注重幼兒的創造性和獨特性,同時滲透了做一件事情可以有多種方法解決的道理。
1、師:“你們用了兩種辦法,還有沒有更多的方法呢?”
2、請幼兒運用學具進行嘗試,并準確找到不同形狀的中心線,探索檢驗的方法。檢驗能夠證明所分的兩部分是一樣大的,檢驗的方法并不是單一的,為幼兒投放了與一塊學具板相同的作業單的目的就是能夠在記錄等分方法的同時,還可以剪開記錄后的作業單進行比較證明。除此方法還可以比較等分線兩側的洞洞子每排數量是否相同等方法。
3、幼兒分組操作,教師針對尋找不同的中心線以及檢查的辦法進行指導,并引導幼兒記錄、檢驗。
4、小結:展示幼兒作業單,誰來說一說你用了什么方法進行了等分,你是怎樣指導它們是一樣大的。請幼兒將有創新的分法介紹給其他的幼兒,并展示不同檢驗相等的方法。讓幼兒能夠有交流展示的機會,并且結合大班幼兒集體學習的特點,鼓勵幼兒創新。
八年級數學勾股定理教案(熱門14篇)篇八
本節內容的重點是線段垂直平分線定理及其逆定理.定理反映了線段垂直平分線的性質,是證明兩條線段相等的依據;逆定理反映了線段垂直平分線的判定,是證明某點在某條直線上及一條直線是已知線段的垂直平分線的依據.
本節內容的難點是定理及逆定理的關系.垂直平分線定理和其逆定理,題設與結論正好相反.學生在應用它們的時候,容易混淆,幫助學生認識定理及其逆定理的區別,這是本節的難點.
本節課教學模式主要采用“學生主體性學習”的教學模式.提出問題讓學生想,設計問題讓學生做,錯誤原因讓學生說,方法與規律讓學生歸納.教師的作用在于組織、點撥、引導,促進學生主動探索,積極思考,大膽想象,總結規律,充分發揮學生的主體作用,讓學生真正成為教學活動的主人.具體說明如下:
學生前面,學習過線段垂直平分線的概念,這樣由復習概念入手,順其自然提出問題:在垂直平分線上任取一點p,它到線段兩端的距離有何關系?學生會很容易得出“相等”.然后學生完成證明,找一名學生的證明過程,進行投影總結.最后,由學生將上述問題,用文字的形式進行歸納,即得線段垂直平分線定理.這樣讓學生親自動手實踐,積極參與發現,激發了學生的認識沖突,使學生克服思維和探求的惰性,獲得鍛煉機會,對定理的產生過程,真正做到心領神會.
線段垂直平分線的定理及逆定理的證明都比較簡單,學生學習一般沒有什么困難,這一節的難點仍然的定理及逆定理的關系,為了很好的突破這一難點,教學時采用與角的平分線的性質定理和逆定理對照,類比的方法進行教學,使學生進一步認識這兩個定理的區別和聯系.
八年級數學勾股定理教案(熱門14篇)篇九
教學目標:
1、知識目標:了解圖案最常見的構圖方式:軸對稱、平移、旋轉……,理解簡單圖案設計的意圖。認識和欣賞平移,旋轉在現實生活中的應用,能夠靈活運用軸對稱、平移、旋轉的組合,設計出簡單的圖案。
2、能力目標:經歷收集、欣賞、分析、操作和設計的過程,培養學生收集和整理信息的能力,分析和解決問題的能力,合作和交流的能力以及創新能力。
3、情感體驗點:經歷對典型圖案設計意圖的分析,進一步發展學生的空間觀念,增強審美意識,培養學生積極進取的生活態度。
重點與難點:
重點:靈活運用軸對稱、平移、旋轉……等方法及它們的組合進行的圖案設計。
難點:分析典型圖案的設計意圖。
疑點:在設計的圖案中清晰地表現自己的設計意圖。
教具學具準備:
提前一周布置學生以小組為單位,通過各種渠道收集到的圖案、圖標的剪貼、臨摹以及。多種常見的圖案及其形成過程的動畫演示。
教學過程設計:
1、情境導入:在優美的音樂中,逐個展示生活中常見的典型圖案,并讓學生試著說一說每種圖案標志的對象。(展示課本圖3—23)。
明確在欣賞了圖案后,簡單地復習旋轉的概念,為下面圖案的設計作好理論準備。對教材給出的六個圖案通過觀察、分析進行議論交流,讓學生初步了解圖案的設計中常常運用圖形變換的思想方法,為學生自己設計圖案指明方向。其中圖(1)、(2)、(3)、(4)、(5)、(6)都可以通過旋轉適合角度形成(可以讓學生自己說說每個旋轉的角度和旋轉的次數及旋轉中心的位置),另外圖(2)、(3)、(5)也可以通過軸對稱變換形成(可以讓學生指出對軸對稱及對稱軸的條數),而圖(2)可以通過平移形成。
2、課本。
1欣賞課本75頁圖3—24的圖案,并分析這個圖案形成過程。
評注:圖案是密鋪圖案的代表,旨在通過對典型圖案的分析欣賞,使學生逐步能夠進行圖案設計,同時了解軸對稱、平移、旋轉變換是圖案制作的基本手段。例題解答的關鍵是確定“基本圖案”,然后再運用平移、旋轉關系加以說明,注意旋轉中心可以為圖形上某一特征的點。
評注:可以取其中的任何一個為基本圖案,然后通過變換得到。而且變化方式也可以是:左下角的圖案通過軸對稱變換得到左上圖和右下圖。
(二)課內練習。
(1)以小組為單位,由每組指定一個同學展示該組搜集得到的圖案,并在全班交流。
(2)利用下面提供的基本圖形,用平移、旋轉、軸對稱、中心對稱等方法進行圖案設計,并簡要說明自己的設計意圖。
(三)議一議。
生活中還有那些圖案用到了平移或旋轉?分析其中的一個,并與同伴進行交流。
(四)課時小結。
本課時的重點是了解平移、旋轉和軸對稱變換是圖案設計的基本方法,并能運用這些變換設計出一些簡單的圖案。
通過今天的學習,你對圖案的設計又增加了哪些新的認識?(可以利用平移、旋轉、軸對稱等多種方法來設計,而且設計的圖案要能表達自己的創作意圖,再就是圖案的設計一定要新穎,獨特,這樣才能使人過目不忘,達到標志的效果。)。
進一步搜集身邊的各種標志性圖案,嘗試著重新設計它,并結合實際背景分析它的設計意圖。
八年級數學勾股定理教案(熱門14篇)篇十
1.知識與技能目標:會用勾股定理及直角三角形的判定條件解決實際問題。
2.過程與方法目標:經歷勾股定理的應用過程,熟練掌握其應用方法,明確應用的條件。
3.情感態度與價值觀目標:通過自主學習的發展體驗獲取數學知識的感受;通過有關勾股定理的歷史講解,對學生進行德育教育。
一、知識點講解。
知識點1:(已知兩邊求第三邊)。
1.在直角三角形中,若兩直角邊的長分別為1cm,2cm,則斜邊長為_____________。
2.已知直角三角形的兩邊長為3、4,則另一條邊長是______________。
3.三角形abc中,ab=10,ac=17,bc邊上的高線ad=8,求bc的長?
知識點2:
利用方程求線段長。
(1)使得c,d兩村到e站的距離相等,e站建在離a站多少km處?
(2)de與ce的位置關系。
(3)使得c,d兩村到e站的距離最短,e站建在離a站多少km處?
利用方程解決翻折問題。
3、在矩形紙片abcd中,ad=4cm,ab=10cm,按圖所示方式折疊,使點b與點d重合,折痕為ef,求de的長。
5、折疊矩形abcd的一邊ad,折痕為ae,且使點d落在bc邊上的點f處,已知ab=8cm,bc=10cm,以b點為原點,bc為x軸,ba為y軸建立平面直角坐標系。求點f和點e坐標。
6、邊長為8和4的矩形oabc的兩邊分別在直角坐標系的x軸和y軸上,若沿對角線ac折疊后,點b落在第四象限b1處,設b1c交x軸于點d,求(1)三角形adc的面積,(2)點b1的坐標,(3)ab1所在的直線解析式.
知識點3:判斷一個三角形是否為直角三角形間接給出三邊的長度或比例關系。
1.(1).若一個三角形的周長12cm,一邊長為3cm,其他兩邊之差為1cm,則這個三角形是___________。
(2).將直角三角形的三邊擴大相同的倍數后,得到的三角形是____________。
(3)在abc中,a:b:c=1:1:,那么abc的確切形狀是_____________。
二、課堂小結。
談一談你這節課都有哪些收獲?
三、課堂練習以上習題。
四、課后作業卷子。
本節課是人教版數學八年級下冊第十七章第一節第二課時的內容,是學生在學習了三角形的有關知識,了解了直角三角形的概念,掌握了直角三角形的性質和一個三角形是直角三角形的條件的基礎上學習勾股定理,加深對勾股定理的理解,提高學生對數形結合的應用與理解。本節第一課時安排了對勾股定理的觀察、計算、猜想、證明及簡單應用的過程;第二課時是通過例題分析與講解,讓學生感受勾股定理在實際生活中的應用,通過從實際問題中抽象出直角三角形這一模型,強化轉化思想,培養學生解決問題的意識和應用能力。
針對本班學生的特點,學生知識水平、學習能力的差距,本節課安排了如下幾個環節:
一、復習引入。
對上節課勾股定理內容進行回顧,強調易錯點。由于學生的注意力集中時間較短,學生知識水平低,引入內容簡短明了,花費時間短。
二、例題講解,鞏固練習,總結數學思想方法。
活動一:用對媒體展示搬運工搬木板的問題,讓學生以小組交流合作,如何將木板運進門內?需要知道們的寬、高,還是其他的條件?學生展示交流結果,之后教師引導學生書寫板書。整個活動以學生為主體,教師及時的引導和強調。
活動二:解決例二梯子滑落的問題。學生自主討論解決問題,書寫過程,之后投影學生書寫過程,教師與學生一起合作修改解題過程。
活動三:學生討論總結如何將實際生活中的問題轉化為數學問題,然后利用勾股定理解決問題。利用勾股定理的前提是什么?如何作輔助線構造這一前提條件?在數學活動中發展了學生的探究意識和合作交流的習慣;體會勾股定理的應用價值,讓學生體會到數學來源于生活,又應用到生活中去,在學習的過程中體會獲得成功的喜悅,提高了學生學習數學的興趣和信心。
二、鞏固練習,熟練新知。
通過測量旗桿活動,發展學生的探究意識,培養學生動手操作的能力,增加學生應用數學知識解決實際問題的經驗和感受。
在教學設計的實施中,也存在著一些問題:
1.由于本班學生能力的差距,本想著通過學生幫帶活動,使學困生充分參與課堂,但在學生合作交流是由于學習能力強的學生,對問題的分析解決所用時間短,而在整個環節設計中轉接的快,未給學困生充分的時間,導致部分學生未能真正的參與到課堂中來。
2.課堂上質疑追問要起到好處,不要增加學生展示的難度,影響展示進程出現中斷或偏離主題的現象。
3.對學生課堂展示的評價方式應體現生評生,師評生,及評價的針對性和及時性。
八年級數學勾股定理教案(熱門14篇)篇十一
一、本節課的成功之處:。
本節課以活動為主線,通過從估算到實驗活動結果的產生讓學生總結過程,最后回到解決生活中實際問題,思路清晰,脈絡明了。
例如:活動1問題:據說古埃及人用下圖的方法畫直角:把一根長蠅打上等距離的13個結,然后以3個結,4個結、5個結的長度為邊長,用木樁釘成一個三角形,其中一個角便是直角.
這個問題意味著,如果圍成的三角形的三邊分別為3、4、5.有下面的`關系“32+42=52”.那么圍成的三角形是直角三角形.
2、體現了“數學源于生活,寓于生活,用于生活”的教育思想;突出了“特征讓學生觀察,思路讓學生探索,方法讓學生思考意義讓學生概括,結論讓學生驗證,難點讓學生突破,以學生為主體”的教學思路。例如:命題2如果三角形的三邊長a,b,c滿足a2+b2=c2那么這個三角形是直角三角形.
如下圖,欲過基線mn上的一點c作它的垂線,可由三名工人操作:一人手拿布尺或測繩的0和12尺處,固定在c點;另一人拿4尺處,把尺拉直,在mn上定出a點,再由一人拿9尺處,把尺拉直,定出b點,于是連結bc,就是mn的垂線.
建筑工人用了3,4,5作出了一個直角,能不能用其他的整數組作出直角呢?
生:可以,例如7,24,25;8,15,17等.
3、在本節教學活動過程中,我經常走下講臺,到學生中去,以學生身份和學生一起探討問題。用一切可能的方式,激勵回答問題的學生,激發學生的求知欲,使師生在和諧的教學環境中零距離的接觸。課堂上學生們的思維空前活躍,發言的人數不斷增多,學生能從多角度認識問題,爭先恐后地交流不同的意見和方法,收到比較好的效果。這是本節課的特色。
二、本節課的不足之處及改進方法:。
1、本節課我沒有利用多媒體輔助教學,如學習目標的發展、習題訓練內容的展示、學生活動的要求、作業布置等,這些內容都是為教學服務的。如果用多媒體課件的展示,可以增大了教學密度,使學生的雙基訓練得到了加強,使傳統的課堂走向了開放,使學生真正感受到學習方式在發生變化。在以后的教學中我應加強。
八年級數學勾股定理教案(熱門14篇)篇十二
如果三角形三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形,其中c為斜邊。
說明:
(2)定理中a,b,c及a2+b2=c2只是一種表現形式,不可認為是唯一的,如若三角形三邊長a,b,c滿足a2+b2=c,那么以a,b,c為三邊的三角形是直角三角形,但此時的斜邊是b。
(1)確定最大邊;
(2)算出最大邊的平方與另兩邊的平方和;
(3)比較最大邊的平方與別兩邊的平方和是否相等,若相等,則說明是直角三角形。
能夠構成直角三角形的三邊長的三個正整數稱為勾股數。
由直角三角形三邊為邊長所構成的三個正方形滿足“兩個較小面積和等于較大面積”。
解決圓柱側面兩點間的距離問題、航海問題,折疊問題、梯子下滑問題等,常直接間接運用勾股定理及其逆定理的應用。
有了上文梳理的勾股定理的逆定理知識點整理,相信大家對考試充滿了信心,同時預祝大家考試取得好成績。
八年級數學勾股定理教案(熱門14篇)篇十三
教學目標:
1、知識目標:
(1)掌握解分式方程的步驟。
(2)理解解分式方程時驗根的必要性。
2、能力目標:
會按照解分式方程的步驟解分式方程。
3、情感與價值觀:
(1)培養學生自覺反思求解過程和自覺檢驗的良好習慣,培養嚴謹的治學態度。
(2)運用“轉化”的思想,將分式方程轉化為整式方程,從而獲得成就感和學習數學的自信。
老師引導學生自主探索分式方程的解法,將分式方程轉化為整式方程,在解題中親身體驗“轉化”思想。弄清了“轉化”的方向,也就明白了解分式方程的步驟,解題思路自然清晰,能力隨之形成。
重點:
1、探索解分式方程的步驟,熟練掌握分式方程的解法。
2、體會解分式方程驗根的必要性。
難點:如何將分式方程轉化為整式方程;體會分式方程驗根的必要性。
學情與教材分析:我所任教的學生大多頭腦聰明,在老師適當的引導下,有一定的探求新知識的能力。但基礎不夠扎實,如計算容易出錯、考慮問題不夠嚴謹等。另外在學習本節課之前,已經學習過《解一元一次方程》。對于《解一元一次方程》大部分同學已經掌握,但由于是在七年級學習,有一定的時間間隔,部分同學可能已經遺忘,給上本節課留下少許的困難。但估計絕大部分同學稍加回憶,應能接近以前的水平。本節課的內容處在《分式》這章的后半部。《分式》這章內容安排如下的:首先介紹分式及分式的基本性質,接著進行分式的加、減、乘、除的運算,之后是根據實際問題列出分式方程(但未求解)。緊跟其后的是本節課內容――解分式方程,最后一節是根據實際問題列出分式方程并求解。由此可見《解分式方程》涵蓋了本章前面的內容,是本章知識的綜合與提高。學習好這部分內容,不但掌握了初二階段有關分式方程的內容,也為初三學習可化為一元二次的分式方程打下了良好的基礎。通過將分式方程轉化為整式方程(一元一次方程)滲透了一種重要的數學思想――轉化思想,即將原問題進行變形,使之轉化為我們所熟悉的或已解決的或易于解決的問題。
八年級數學勾股定理教案(熱門14篇)篇十四
1、理解極差的定義,知道極差是用來反映數據波動范圍的一個量.
2、會求一組數據的極差.
1、重點:會求一組數據的極差.
2、難點:本節課內容較容易接受,不存在難點、
從表中你能得到哪些信息?
比較兩段時間氣溫的高低,求平均氣溫是一種常用的方法、
這是不是說,兩個時段的氣溫情況沒有什么差異呢?
根據兩段時間的氣溫情況可繪成的折線圖、
觀察一下,它們有區別嗎?說說你觀察得到的結果、
本節課在教材中沒有相應的例題,教材p152習題分析。
問題1可由極差計算公式直接得出,由于差值較大,結合本題背景可以說明該村貧富差距較大、問題2涉及前一個學期統計知識首先應回憶復習已學知識、問題3答案并不唯一,合理即可。