教學計劃的靈活性和針對性有助于教師更好地應對不同學生的學習需求和課堂的變化情況。下面是一些成功教學計劃的案例分享,希望能夠給大家提供一些借鑒和啟發。
正弦定理教學設計范文(21篇)篇一
1.勾股定理的逆定理是研究特殊三角形——直角三角形的一種判定方法,體現了數形結合的思想。
2.通過勾股定理與它的逆定理的學習,加深了學生對性質與判定之間辨證統一關系的認識。
3.完善了知識結構,為后繼學習打下基礎。
初中生已經具備一定的獨立思考和探索能力,并能在探索過程中形成自已的觀點,能在傾聽別人意見的過程中逐漸完善自已的想法,而且本班學生比較上進,思維活躍,愿意表達自已的見解,有一定的互動互助基礎。
1.知識與技能:
(2)掌握勾股定理的逆定理,并能應用勾股定理的逆定理判定一個三角形是不是直角三角形。
2.過程與方法。
(1)通過對勾股定理的逆定理的探索,經歷知識的發生、發展與形成過程。
(2)通過用三角形三邊的數量關系來判斷三角形的形狀,體驗數形結合方法的應用。
(3)通過對勾股定理的逆定理的證明,體會數形結合方法在問題解決中的作用,并能應用勾股定理的逆定理來解決相關問題。
3.情感態度。
(2)在探索勾股定理的逆定理的活動中,通過一系列的富有探究性的問題,滲透與他人交流、合作的意識和探究精神。
正弦定理教學設計范文(21篇)篇二
一、教學內容:
本節課主要通過對實際問題的探索,構建數學模型,利用數學實驗猜想發現正弦定理,并從理論上加以證實,最后進行簡單的應用。
二、教材分析:
1、教材地位與作用:本節內容安排在《普通高中課程標準實驗教科書。數學必修5》(a版)第一章中,是在高二學生學習了三角等知識之后安排的,顯然是對三角知識的應用;同時,作為三角形中的一個定理,也是對初中解直角三角形內容的直接延伸,而定理本身的應用(定理應用放在下一節專門研究)又十分廣泛,因此做好該節內容的教學,使學生通過對任意三角形中正弦定理的探索、發現和證實,感受“類比--猜想--證實”的科學研究問題的思路和方法,體會由“定性研究到定量研究”這種數學地思考問題和研究問題的思想,養成大膽猜想、善于思考的品質和勇于求真的精神。
2、教學重點和難點:重點是正弦定理的發現和證實;難點是三角形外接圓法證實。
三、教學目標:
1、知識目標:
2、能力目標:
(1)通過對實際問題的探索,培養學生數學地觀察問題、提出問題、分析問題、解決問題的能力。
(2)增強學生的協作能力和數學交流能力。
(3)發展學生的創新意識和創新能力。
3、情感態度與價值觀:
(1)通過學生自主探索、合作交流,親身體驗數學規律的發現,培養學生勇于探索、善于發現、不畏艱辛的創新品質,增強學習的成功心理,激發學習數學的愛好。
(2)通過實例的社會意義,培養學生的愛國主義情感和為祖國努力學習的責任心。
本節課采用探究式課堂教學模式,即在教學過程中,在教師的啟發引導下,以學生獨立自主和合作交流為前提,以“正弦定理的發現”為基本探究內容,以四周世界和生活實際為參照對象,為學生提供充分自由表達、質疑、探究、討論問題的機會,讓學生通過個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學知識應用于對任意三角形性質的深入探討。讓學生在“活動”中學習,在“主動”中發展,在“合作”中增知,在“探究”中創新。設計思路如下:
正弦定理教學設計范文(21篇)篇三
本節課是在上節課學習了圓的概念及弧、弦等概念的基礎上的一節課。在上節課結束時留給學生這樣一個問題“你還想進一步研究什么?”通過學習,學生很容易聯系到上節課學習了圓、弧、弦、直徑、半徑等有關知識。那么圓內這些元素還具有哪些性質呢?學生自然地從上節課過渡到這節課的學習,同時培養了學生勤于動腦,勤于思考的好習慣,激發了學生學習的興趣與熱情。
本節課主要有兩方面的內容:一是圓的軸對稱性,二是垂徑定理及其推論。開始以趙州橋的問題引入課題,帶著問題進行學習。圓的軸對稱性主要是通過動手操作得出結論,圓是軸對稱圖形,根據軸對稱性進一步研究圓中相等的弦、弧得出垂徑定理及其推論。利用此定理再去解決趙州橋問題,每一個環節都是環環相扣,不是孤立存在的。
教學目標。
經歷探索圓的軸對稱性及相關性質的過程,進一步體會和理解研究幾何圖形的各種方法。理解并應用垂徑定理進行有關的計算。
重點難點。
掌握垂徑定理及其推論,學會運用垂徑定理等結論解決一些有關證明、計算和作圖問題。
反思之一:實際問題的意義的看法。
數學來源于生活,又服務于生活。在實際生活中,數、形隨處可見,無處不在。好的實際問題容易引起學生的興趣,激發學生探索和發現問題的欲望,使學生感到數學課很熟悉,數學知識離我們很近。學生在解決實際問題的過程中,主要困難有兩點,一是學生一見到實際問題就畏懼,根本不去讀題,二是學生對實際背景不熟悉。為此,本節課設計了一個實際問題,這樣做的好處,一是具有非常實際的用途,二是與本節課的內容具有直接關系。這個問題解決了,以后學生再講到類似的實際問題時,就不會感到陌生。
每種教學模式都有其優劣,如果一味地按一種教學模式貫穿于整個教學過程,并不能達到最好的教學效果。對于我們教師來說,應根據不同的教學內容,選擇不同的教學模式來教學,這樣效果會更好。本節課,由于學生的差異較大,所以選擇了小組合作這種教學模式,發揮小組合作學習的優勢,給學生創造一個寬松的學習環境,使學生消除畏懼怕錯的心理壓力,激發學生的創新精神,幫助學生樹立學好知識的信心和勇氣。
反思之二:需要更加關注學生。
教學中,把尊重學生,關注學生的發展動態始終放在第一位。在這節課中,注重學生間的合作交流,給學生多次展示自己的機會,鍛煉學生的膽量,培養學生語言表達能力及邏輯推理能力,并給予適當的鼓勵和表揚,使學生有成功感,增強學生學好數學的信心。
在知識發生發展與應用過程中注重教學思想方法的滲透,如本節課從特殊到一般的數學思想,交給學生解決問題的辦法,使學生學會學習。
正弦定理教學設計范文(21篇)篇四
各位專家、評委:
你們好!很高興能有機會參加這次活動,并得到您的指導。
我說課的題目是:圓的軸對稱性——垂徑定理及其推論。它是人教版義務教育課程標準實驗教科書《數學》九年級上冊第二十四章第一節的第二部分《垂直于弦的直徑》的內容。。
這部分內容教材安排了兩課時,其中第一課時講圓的軸對稱性,第二課時講圓的旋轉不變性。
結合我對教材的理解和我所任教班級學生的實際情況,我將圓的軸對稱性一課時內容調整為兩課時,今天我所講的是第一課時——垂徑定理及其推論。
下面,我就從教學內容,教學目標、教學方法與手段、教學過程設計等四個方面進行說明。
一、教學內容的說明。
教師只有對教材有較為準確、深刻、本質的理解,并從“假如我是學生”的角度審視學生的可接受性,才能處理好教材。
垂徑定理及其推論反映了圓的重要性質,是證明線段相等、弧相等、垂直關系的重要依據,為進行圓的計算和作圖提供了重要依據,因此這部分內容是學習的重點,垂徑定理及其推論的題設和結論較為復雜,容易混淆,因此也是學習的難點。
鑒于這種理解,通覽教材,我確定出如下教學內容:
(1)了解圓的軸對稱性。
(2)弄清垂徑定理及其推論的題設和結論。(3)運用垂徑定理及其推論進行有關的計算和證明。
(4)學會與垂徑定理有關的添加輔助線的方法。
正弦定理教學設計范文(21篇)篇五
大家好,今天我向大家說課的題目是《正弦定理》。下面我將從以下幾個方面介紹我這堂課的教學設計。
一、教材分析。
本節知識是必修五第一章《解三角形》的第一節內容,與初中學習的三角形的邊和角的基本關系有密切的聯系與判定三角形的全等也有密切聯系,在日常生活和工業生產中也時常有解三角形的問題,而且解三角形和三角函數聯系在高考當中也時常考一些解答題。因此,正弦定理和余弦定理的知識非常重要。
根據上述教材內容分析,考慮到學生已有的認知結構心理特征及原有知識水平,制定如下教學目標:
認知目標:在創設的問題情境中,引導學生發現正弦定理的內容,推證正弦定理及簡單運用正弦定理與三角形的內角和定理解斜三角形的兩類問題。
能力目標:引導學生通過觀察,推導,比較,由特殊到一般歸納出正弦定理,培養學生的創新意識和觀察與邏輯思維能力,能體會用向量作為數形結合的工具,將幾何問題轉化為代數問題。
情感目標:面向全體學生,創造平等的教學氛圍,通過學生之間、師生之間的交流、合作和評價,調動學生的主動性和積極性,給學生成功的體驗,激發學生學習的`興趣。
教學重點:正弦定理的內容,正弦定理的證明及基本應用。
教學難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數。
二、教法。
正弦定理教學設計范文(21篇)篇六
“垂徑定理”是圓的重要性質之一,也是全章的基礎之一,在整章中占有舉足輕重的地位,是今后研究圓與其他圖形位置關系和數量關系的基礎,這些知識在日常生活和生產中有廣泛的應用。由于垂徑定理及其推論反映了圓的重要性質,是證明線段相等、角相等、垂直關系的重要依據,因此,它是整節書的重點及難點。
對本節課的教學我有以下幾點反思:
1、本節課主要有兩方面的內容:一是圓的軸對稱性,二是垂徑定理及其推論。開始以趙州橋的問題引入課題,帶著問題進行學習,學習有目標,圓的軸對稱性主要是通過動手操作得出結論,圓是軸對稱圖形,根據軸對稱性進一步研究圓中相等的弦,弧得出垂徑定理及其推論。利用此定理再去解決趙州橋問題,每一個環節都是環環相扣,不是孤立存在的。
2.在數學教學中,語言的嚴密性,邏輯性很重要的,而我在課堂上,尤其是知識點的聯系方面的引導詞,結論的表述,更加需要再努力鉆研.今后我將在這方面下工夫,在去聽其他數學老師的課時,要注意其他老師在知識點同知識點之間的過渡語句.
3在教案設計方面,在時間上把握得不夠準確。有點前松后緊。前面在復習的部分應該加些關于勾股定理的計算的題目,使學生在后面解直角三角形時能夠更加快,更熟練;在多媒體中,題目的梯度設計雖然很好但時間緊練習題量太小。
4,其實這節課還有個作圖思想要灌輸給學生,即教學生如果見到弦心距,弦,那么直接連半徑構成直角三角形;如果就是只知道一條弦的題目,就要連弦心距都要作出來,應加強兩種題目的訓練。.
通過反思這一課的課堂教學,我認識到要善于處理好教學中知識傳授與能力培養的關系,巧妙地引導學生解決生活中的數學問題。不斷地激發學生的學習積極性與主動性,培養學生思維能力、想象力和創新精神,使每個學生的身心都能得到充分的發展。這些問題給了我一個今后的努力的方向.在今后的教學中,我會更加努力。
正弦定理教學設計范文(21篇)篇七
本節課是高一數學第五章《三角比》第三單元中正弦定理的第一課時,它既是初中“解直角三角形”內容的直接延拓,也是坐標法等知識在三角形中的具體運用,是生產、生活實際問題的重要工具,正弦定理揭示了任意三角形的邊角之間的一種等量關系,它與后面的余弦定理都是解三角形的重要工具。
本節課其主要任務是引入證明正弦定理及正弦定理的基本應用,在課型上屬于“定理教學課”。因此,做好“正弦定理”的教學,不僅能復習鞏固舊知識,使學生掌握新的有用的知識,體會聯系、發展等辯證觀點,學生通過對定理證明的探究和討論,體驗到數學發現和創造的歷程,進而培養學生提出問題、解決問題等研究性學習的能力。
二、學情分析。
對高一的學生來說,一方面已經學習了平面幾何,解直角三角形,任意角的三角比等知識,具有一定觀察分析、解決問題的能力;但另一方面對新舊知識間的聯系、理解、應用往往會出現思維障礙,思維靈活性、深刻性受到制約。根據以上特點,教師恰當引導,提高學生學習主動性,注意前后知識間的聯系,引導學生直接參與分析問題、解決問題。
三、設計思想:
培養學生學會學習、學會探究是全面發展學生能力的重要方面,也是高中新課程改革的主要任務。如何培養學生學會學習、學會探究呢?建構主義認為:“知識不是被動吸收的,而是由認知主體主動建構的。”這個觀點從教學的角度來理解就是:知識不僅是通過教師傳授得到的,更重要的是學生在一定的情境中,運用已有的學習經驗,并通過與他人(在教師指導和學習伙伴的幫助下)協作,主動建構而獲得的,建構主義教學模式強調以學生為中心,視學生為認知的主體,教師只對學生的意義建構起幫助和促進作用。本節“正弦定理”的教學,將遵循這個原則而進行設計。
四、教學目標:
1、在創設的問題情境中,讓學生從已有的幾何知識和處理幾何圖形的常用方法出發,探索和證明正弦定理,體驗坐標法將幾何問題轉化為代數問題的優越性,感受數學論證的嚴謹性.
2、理解三角形面積公式,能運用正弦定理解決三角形的兩類基本問題,并初步認識用正弦定理解三角形時,會有一解、兩解、無解三種情況。
3、通過對實際問題的探索,培養學生的數學應用意識,激發學生學習的興趣,讓學生感受到數學知識既來源于生活,又服務與生活。
五、教學重點與難點。
教學重點:正弦定理的探索與證明;正弦定理的基本應用。
教學難點:正弦定理的探索與證明。
主體下給于適當的提示和指導。
六、復習引入:
結論:
證明:(向量法)過a作單位向量j垂直于ac,由ac+cb=ab邊同乘以單位向量。
正弦定理:在一個三角形中,各邊和它所對角的正弦的比相等。
正弦定理教學設計范文(21篇)篇八
知識與技能:
了解勾股定理的一些證明方法,會簡單應用勾股定理解決問題。
在充分觀察、歸納、猜想的基礎上,探究勾股定理,在探究的過程中,發展合情推理,體會數形結合、從特殊到一般等數學思想。
通過對我國古代研究勾股定理的成就介紹,培養學生的民族自豪感。
1、創設情境。
師生活動:教師引導學生尋找圖形中的直角三角形和正方形等,并引導學生發現直角三角形的全等關系,指出通過今天的學習,就能理解會徽圖案的含義。
設計意圖:本節課是本章的起始課,重視引言教學,從國際數學家大會的會徽說起,設置懸念,引入課題。
觀看洋蔥數學中關于勾股定理引入的視頻,讓我們一起走進神奇的數學世界。
追問:由這三個正方形的邊長構成的等腰直角三角形三條邊長之間又有怎么樣的關系?
師生活動:教師引導學生發現正方形的面積等于邊長的平方,歸納出:等腰直角三角形兩條直角邊的平方和等于斜邊的平方。
設計意圖:從最特殊的等腰直角三角形入手,便于學生觀察得到結論。
問題3:數學研究遵循從特殊到一般的數學思想,既然我們得到了等腰直角三角形三邊的這種特殊的數量關系,那我們不妨大膽猜測在一般的直角三角形(在下圖的方格紙中,每個方格的面積是1)中,這種特殊的數量關系也同樣成立。
師生活動:學生獨立思考后小組討論,難點是如何證明求以斜邊為邊長的正方形的面積,可由師生共同總結得出可以通過割、補兩種方法,求出其面積。
正弦定理教學設計范文(21篇)篇九
本節課是高一數學第五章《三角比》第三單元中正弦定理的第一課時,它既是初中“解直角三角形”內容的直接延拓,也是坐標法等知識在三角形中的具體運用,是生產、生活實際問題的重要工具,正弦定理揭示了任意三角形的邊角之間的一種等量關系,它與后面的余弦定理都是解三角形的重要工具。
本節課其主要任務是引入證明正弦定理及正弦定理的基本應用,在課型上屬于“定理教學課”。因此,做好“正弦定理”的教學,不僅能復習鞏固舊知識,使學生掌握新的有用的知識,體會聯系、發展等辯證觀點,學生通過對定理證明的探究和討論,體驗到數學發現和創造的歷程,進而培養學生提出問題、解決問題等研究性學習的能力。
二、學情分析。
對高一的學生來說,一方面已經學習了平面幾何,解直角三角形,任意角的三角比等知識,具有一定觀察分析、解決問題的能力;但另一方面對新舊知識間的聯系、理解、應用往往會出現思維障礙,思維靈活性、深刻性受到制約。根據以上特點,教師恰當引導,提高學生學習主動性,注意前后知識間的聯系,引導學生直接參與分析問題、解決問題。
三、設計思想:
培養學生學會學習、學會探究是全面發展學生能力的重要方面,也是高中新課程改革的主要任務。如何培養學生學會學習、學會探究呢?建構主義認為:“知識不是被動吸收的,而是由認知主體主動建構的。”這個觀點從教學的角度來理解就是:知識不僅是通過教師傳授得到的,更重要的是學生在一定的情境中,運用已有的學習經驗,并通過與他人(在教師指導和學習伙伴的幫助下)協作,主動建構而獲得的,建構主義教學模式強調以學生為中心,視學生為認知的主體,教師只對學生的意義建構起幫助和促進作用。本節“正弦定理”的教學,將遵循這個原則而進行設計。
四、教學目標:
1、在創設的問題情境中,讓學生從已有的幾何知識和處理幾何圖形的常用方法出發,探索和證明正弦定理,體驗坐標法將幾何問題轉化為代數問題的優越性,感受數學論證的嚴謹性。
2、理解三角形面積公式,能運用正弦定理解決三角形的兩類基本問題,并初步認識用正弦定理解三角形時,會有一解、兩解、無解三種情況。
3、通過對實際問題的探索,培養學生的數學應用意識,激發學生學習的興趣,讓學生感受到數學知識既來源于生活,又服務與生活。
五、教學重點與難點。
教學重點:正弦定理的探索與證明;正弦定理的基本應用。
教學難點:正弦定理的探索與證明。
突破難點的手段:抓知識選擇的切入點,從學生原有的認知水平和所需的知識特點入手,教師在學生主體下給于適當的提示和指導。
六、復習引入:
結論:
證明:(向量法)過a作單位向量j垂直于ac,由ac+cb=ab邊同乘以單位向量。
正弦定理:在一個三角形中,各邊和它所對角的正弦的比相等。
七、教學反思。
本節是“正弦定理”定理的第一節,在備課中有兩個問題需要精心設計。一個是問題的引入,一個是定理的證明。通過兩個實際問題引入,讓學生體會為什么要學習這節課,從學生的“最近發展區”入手進行設計,尋求解決問題的方法。具體的思路就是從解決課本的實際問題入手展開,將問題一般化導出三角形中的邊角關系——正弦定理。因此,做好“正弦定理”的教學既能復習鞏固舊知識,也能讓學生掌握新的有用的知識,有效提高學生解決問題的能力。
1、在教學過程中,我注重引導學生的思維發生,發展,讓學生體會數學問題是如何解決的,給學生解決問題的一般思路。從學生熟悉的直角三角形邊角關系,把銳角三角形和鈍角三角形的問題也轉化為直角三角形的性,從而得到解決,并滲透了分類討論思想和數形結合思想等思想。
2、在教學中我恰當地利用多媒體技術,是突破教學難點的一個重要手段。利用《幾何畫板》探究比值的值,由動到靜,取得了很好的效果,加深了學生的印象。
3、由于設計的內容比較的多,教學時間的超時,這說明我自己對學生情況的把握不夠準確到位,致使教學過程中時間的分配不夠適當,教學語言不夠精簡,今后我一定避免此類問題,爭取更大的進步。
正弦定理教學設計范文(21篇)篇十
首先講下這節課,我的一些思路:
在教學方法與教材處理方面,根據現在的教材特點,教學內容以及在新課標理念的指導下,最后決定讓學生在課堂上多動手、多觀察、多交流,最后得出定理,這個方法符合新課程理念觀點,也符合教師的主導作用與學生的主體地位相統一的原則。
同時,在教學中,我充分利用教具和投影儀,提高教學效率。在實驗,演示,操作,觀察,練習等師生的共同活動中啟發學生,培養學生直覺思維能力,結合學生實際情況作適當的拓廣。
我參加這次教學技能大賽,獲益良多主要體現在以下幾個方面:
(1)在數學教學中,一些結論的表述是很重要的,而我在這節課上有些表述確實不是很正確;而且我在課堂上,尤其是知識點的聯系方面的引導詞,更加需要再努力鉆研。今后我將在這方面下工夫,在去聽其他數學老師的課時,要注意其他老師在知識點同知識點之間的過渡語句。
(2)一些該讓學生知道的知識點,講得不夠透徹。如cd是直徑,其實應該可以拓展為過圓心的直線(要多強調,而不是一筆帶過);不能夠用數量關系求的,應該要適當地引導學生設未知數。而不是直接告訴學生這種題目就是要設未知數。同樣在已知一條邊,不夠條件求解時,也要引導學生利用未知數來解題的這種題目,引導得不夠,或者話引導得不夠深刻,學生就會覺得是老師直接將知識倒向他,而他不一定能接受。
(3)在學案設計方面,在時間上把握得不夠準確,設計的學案內容太多,在這節課上如果估計過量已經足夠的話,垂徑定理的推論其實可以放在下節課。這樣就不會使得后面講推論的時間太短,太倉促。前面復習用的時間太長,在復習的部分應該多加些關于勾股定理的計算的題目,使學生在后面解直角三角形時能夠更加快,更熟練;而學案中練習題的量太少,而且是題型太單一,可以再做多些找相等的量的基礎訓練,對b班的學生更加熟悉垂徑定理,基礎題目的掌握對b班大有好處。
(4)其實這節課還有個作圖思想要灌輸比學生,即是教學生如果見到弦心距,弦,那么直接連半徑構成直角三角形;如果就是只知道一條弦的題目,就要邊弦心距都要作出來,而這兩種題目我的訓練都不到位。
最后,這些失誤給了我一個今后的努力的方向。在今后的學習中,我努力鉆研教材改正自己缺點。
正弦定理教學設計范文(21篇)篇十一
垂直于弦的直徑也叫垂經定理,是初中九年級人教版第二十四章第2節內容,它是圓中有關計算方面比較重要的一節。
本節課主要經過了三個環節:第一個環節是讓學生通過折自制的圓形圖片得出圓是軸對稱圖形,每一條經過圓心的直線都是它的對稱軸,它有無數條對稱軸。第二個環節是讓學生通過探究得出垂經定理的內容。第三個環節是利用垂經定理解決有關方面的計算。其中,第二個環節是本節課的重點,也是我這節課的一個亮點。具體經過以下5個步驟:
(1)讓學生拿出自己手中的圓形圖片對折圓,找出圓心。(學生很感興趣,有些同學折的是兩條互相垂直的直徑得出圓心,有些同學折的是兩條斜交的直徑得出圓心,但方法都很好。)。
(2)讓兩條互相垂直的直徑其中一條不動,另一條直徑向下平移,變成一條普通的弦,并且和原來的一條直徑仍然保持垂直關系。
(3)讓學生在自己的圖片上畫出與直徑垂直的弦,并讓他們把圓形圖片沿直徑對折,問學生會發現什么結論?(平分弦,也平分弦所對的兩條弧)。
(4)問學生在什么樣條件下得出這些結論的?
(5)最后引導學生歸納出垂經定理的內容,教師再補充、強調并板書。
通過這一探究過程,大部分學生參與到課堂中去,并培養了學生動手操作和創新的能力,也激發了學生探究問題的興趣,學生就在這種輕松、愉快的活動中掌握了垂徑定理,實現了教學的有效性,這是在這節課中我感覺最成功的地方。
當然,整節課也有許多不足之處。例如,在對垂經定理有關計算方面的安排上欠妥,具體表現在:
(1)把課本中趙州橋的問題作為第一個練習題讓學生解決稍微偏難,應該先解決一些簡單的類型題。比如:已知弦的長度和圓心到弦的距離,求圓的半徑這類題,這樣的話學生不但鞏固了垂經定理,而且也能體會到成功的喜悅,等再處理趙州橋的問題就變成水到渠成的事情了。
(2)垂經定理中平分弦的證明過程盡量給學生留點時間讓學生板書出來,這樣可以防止學生缺少主動性,并且會有更多的學生參與到課堂中去。
(3)應該給學生滲透一些情感教育,讓學生知道數學來源于生活,又應用于生活。總之,在教學設計和課堂教學中應充分了解學生,研究學生,我們不僅要備教材,而且還要備學生。要真正樹立以學生的發展為本的教學理念。只有這樣,才能為學生提供充分的教學活動和交流的機會,使學生從單純的的知識接受者變為數學學習的主人。
正弦定理教學設計范文(21篇)篇十二
本節課夏老師先復習了上節課學習的圓的概念及弧、弦等概念。然后比較三幅圖,找出共同點---軸對稱圖形。這節課的目的性很強,圍繞一個知識系統“垂徑定理及其逆定理”展開。首先,夏老師讓學生畫圓折紙,設計的問題都是典型問題,而且巧妙開放,層層遞進,有效的調動學生學習興趣,喚起學生的求知欲,激起了學生的積極思考。整節課抓住相關的基本圖形、基本輔助線、基本幾何結論的應用,使學生的思維得到訓練和提升。
夏教師的課堂調控能力很強,課堂中問題的處理過程,大都是學生先有一定的時間自己思考,提出想法并向大家展示交流,然后共同解決問題,教師絕不包辦,很好地體現了以學為主體的課標要求。教師肯花時間讓學生大膽說出自己在思考過程中遇到的困難和障礙,呈現學生的思維盲點,然后通過學生之間的合作交流和教師的點撥啟發幫助學生理清思路。
在教學方法與教材處理方面,夏老師能根據現在的教材特點及學情,在新課標理念的指導下,讓學生在課堂上多動手、多觀察、多交流,最后得出定理,這個方法符合新課程理念觀點,也符合教師的主導作用與學生的主體地位相統一的原則。
正弦定理教學設計范文(21篇)篇十三
正弦定理是高中新教材人教a版必修五第一章1.1.1的內容,是學生在已有知識的基礎上,通過對三角形邊角關系的研究,發現并掌握三角形的邊長與角度之間的數量關系。提出兩個實際問題,并指出解決問題的關鍵在于研究三角形的邊、角關系,從而引導學生產生探索愿望,激發學生的學習興趣。在教學過程中,要引導學生自主探究三角形的邊角關系,先由特殊情況發現結論,再對一般三角形進行推導,并引導學生分析正弦定理可以解決兩類關于解三角形的問題:
(1)已知兩角和一邊,解三角形;。
(2)已知兩邊和其中一邊的對角,解三角形。
本節授課對象是高二學生,是在學生學習了必修四基本初等函數和三角恒等變換的.基礎上,由實際問題出發探索研究三角形邊角關系,得出正弦定理。高二學生對生產生活問題比較感興趣,由實際問題出發可以激發學生的學習興趣,使學生產生探索研究的愿望。
知識與技能目標。
能準確寫出正弦定理的符號表達式,能夠運用正弦定理理解三角形、初步解決某些測量和幾何計算有關的簡單的實際問題。
過程與方法目標。
通過對定理的證明和應用,鍛煉獨立解決問題的能力和體會分類討論和數形結合的思想方法。
情感態度價值觀目標。
通過對三角形邊角關系的探究學習,經歷數學探究活動的過程,體會由特殊到一般再由一般到特殊的認識事物規律,培養探索精神和創新意識。
重點。
難點。
正弦定理的推導與正弦定理的運用。
運用“發現問題——自主探究——嘗試指導——合作交流”的教學方式,整堂課圍繞“一切為了學生發展”的教學原則,突出:師生互動、共同探索,教師指導、循序漸進。
新課引入——提出問題,激發學生的求知欲。掌握正弦定理的推導證明——分類討論,數形結合動腦思考,由一般到特殊,組織學生自主探索,獲得正弦定理及證明過程。
例題處理——始終由問題出發,層層設疑,讓他們在探索中得到知識。鞏固練習,深化對正弦定理的理解。
(一)導入新課。
我采用的是設疑導入,進行口頭提問:
設計意圖:通過生活中的知識引入,激發學生學習需要和學習期待,以問題引起學生學習熱情和探索新知的欲望。讓學生積極主動的參與到課堂里面來,更好的調動學習氛圍。
(二)新課教學。
1.復習舊知。
帶動學生回憶以前學過的知識,并設置如下問題引導學生思考,減少學生對新知識的陌生感。
正弦定理教學設計范文(21篇)篇十四
1、知識目標:
(2)學會利用勾股定理進行計算、證明與作圖;。
2、能力目標:
(1)在定理的證明中培養學生的拼圖能力;。
(2)通過問題的解決,提高學生的運算能力。
3、情感目標:
(1)通過自主學習的發展體驗獲取數學知識的感受;。
(2)通過有關勾股定理的歷史講解,對學生進行德育教育.
教學難點:通過有關勾股定理的歷史講解,對學生進行德育教育。
教學用具:直尺,微機。
教學方法:以學生為主體的討論探索法。
文檔為doc格式。
正弦定理教學設計范文(21篇)篇十五
正弦定理,是指在任意一三角形中,三角形的任意一邊與其對角的正弦之比皆相等。這學期我也學習了這個數學定理,我們老師常常會用這個定理來解決有關角度和邊長的問題。剛開始學習這個定理時,我感到十分新奇,畢竟,這是一種以三角函數為基礎的理論。但隨著學習的深入,我發現正弦定理不僅僅只是一種理論,它也有很多的真實應用。通過學習這個定理,我更深入地了解到了數學在各種領域的廣泛應用。
第二段:對正弦定理進行詳細的闡述,解釋其原理及公式。
正弦定理的公式是:a/sinA=b/sinB=c/sinC。其中,a、b、c為三角形的三邊,A、B、C為相應的角。正在定理的基礎上,我們可以通過已知兩條邊和它們所對應的角度之一,求出第三條邊,也可以通過已知三條邊中的兩條邊和它們所對應的角之一,求出第三條邊所對應的角度。在數學中,正弦定理與余弦定理、正弦余弦定理等一起構成了"三角函數的大合集",是高中數學的必修內容之一。
雖然正弦定理在解決由角度和邊長構成的三角形問題時表現出了良好的效果,但在一些情況下,它并不能解決問題。我們在實際運用中,會發現正弦定理求解困難或不切實際的情況較多,這時候,我們可以選擇用余弦定理或正弦余弦定理來求解問題。所以,正弦定理只是三角函數大合集的一個組成部分,與其他的三角函數定理一起使用,才能更充分地解決各種三角形問題。
第四段:談談正弦定理的實際應用。
在實際應用中,正弦定理被廣泛應用于各種領域中。比如在設計橋梁和構建建筑物時,正弦定理用于計算角度和邊長。在天文學中,正弦定理被用于計算星際距離以及行星星球的位置和軌道。在航空航天領域中,正弦定理也經常被用來計算行星和衛星的速度和加速度等。正弦定理的真實應用甚至不局限于數學領域。它也在物理學、工程學、計算機科學領域中得到了廣泛應用。
第五段:總結。
綜上所述,正弦定理是數學中常用的一種三角函數定理。雖然它存在一定的局限性,但在解決各種角度和邊長相關的問題時,它也表現出了優良的效果。同時,正弦定理也廣泛應用于各個領域,使我們更深入地了解數學物理學的真實應用。我相信,在日后的學習和實際運用中,我仍會遇到更多關于正弦定理的問題和挑戰,我會不斷深入地了解學習更多三角函數的知識,提高自己的能力。
正弦定理教學設計范文(21篇)篇十六
本節課是“正弦定理”教學的第二節課,其主要任務是通過對正弦定理的進一步理解,明確它在“已知三角形的兩邊及一邊所對的角解三角形”方面的應用和運用正弦定理的變式來求三角形中的角和判斷三角形的形狀。
在知識目標方面:通過創設適宜的數學情境,引導鼓勵學生大膽地提出問題、引導學生對所提的問題進行分析、整理,篩選出有價值的問題,注意啟發學生揭示問題的數學實質,將提問推向深入。通過問題的提出、解題方法的探索、到問題的解決、方法的總結、及練習題中方法的應用,都能緊抓公式及公式的變式,運用從特殊到一般、再從一般到特殊的思想方法達成知識目標。通過練習及六個變式問題調動學生的學習熱情,進而采用“正弦定理”、“大邊對大角”、“三角形內角和定理”、“數形結合”等知識與方法有效突破本節課的教學難點。使學生明白這一類數學問題該怎樣解,讓學生做到“學會數學,會學數學”
在能力目標方面:通過例題、練習及六個變式問題,培養學生觀察、歸納、概括新知識的能力;通過“故意出錯”,讓學生“質疑”、“找錯”、“改錯”,從而使學生的思維具有批判性,優化他們的思維品質;通過課后練習及課后思考,進一步培養學生的數學意識,解決數學問題的能力。
在情感態度與價值觀方面:本節課也很注重對學生非智力因素的培養,注重情感交流與情感的建立與培養。并在教學過程中做到:與學生真誠相處、平等交流;依據自己的個人特點采取適當的'方法與技巧,注重充分發揮教師的個人人格魅力,而非千篇一律的“柔聲細語”;能借助信息技術及其它手段,營造一種氛圍,一種情境,通過“課前音樂背景”的設置,“課堂上的掌聲鼓勵”“形體語言與語言藝術”的運用等,力爭營造一種愉快、輕松的氛圍,創建一個有助于師生,生生思維交流的“情感場”,使數學教學更具有生命力,感染力。使學生在感悟數學的過程中感受數學的魅力,體驗數學產生的美感與幸福感。
通過這節課的學習,不僅復習鞏固了舊知識,使學生掌握了新的有用的知識,體會聯系、發展等辯證觀點,而且培養了學生的應用意識和實踐操作能力,以及提出問題、解決問題等研究性學習的能力。
文檔為doc格式。
正弦定理教學設計范文(21篇)篇十七
通過正弦定理讓我們更容易的了解數學,正弦定理的教學內容有哪些呢?以下是本站小編為大家整理的關于《正弦定理》教案,給大家作為參考,歡迎閱讀!
一、教學內容分析。
本節課是高一數學第五章《三角比》第三單元中正弦定理的第一課時,它既是初中“解直角三角形”內容的直接延拓,也是坐標法等知識在三角形中的具體運用,是生產、生活實際問題的重要工具,正弦定理揭示了任意三角形的邊角之間的一種等量關系,它與后面的余弦定理都是解三角形的重要工具。
本節課其主要任務是引入證明正弦定理及正弦定理的基本應用,在課型上屬于“定理教學課”。因此,做好“正弦定理”的教學,不僅能復習鞏固舊知識,使學生掌握新的有用的知識,體會聯系、發展等辯證觀點,學生通過對定理證明的探究和討論,體驗到數學發現和創造的歷程,進而培養學生提出問題、解決問題等研究性學習的能力。
二、學情分析。
對高一的學生來說,一方面已經學習了平面幾何,解直角三角形,任意角的三角比等知識,具有一定觀察分析、解決問題的能力;但另一方面對新舊知識間的聯系、理解、應用往往會出現思維障礙,思維靈活性、深刻性受到制約。根據以上特點,教師恰當引導,提高學生學習主動性,注意前后知識間的聯系,引導學生直接參與分析問題、解決問題。
三、設計思想:
培養學生學會學習、學會探究是全面發展學生能力的重要方面,也是高中新課程改革的主要任務。如何培養學生學會學習、學會探究呢?建構主義認為:“知識不是被動吸收的,而是由認知主體主動建構的。”這個觀點從教學的角度來理解就是:知識不僅是通過教師傳授得到的,更重要的是學生在一定的情境中,運用已有的學習經驗,并通過與他人(在教師指導和學習伙伴的幫助下)協作,主動建構而獲得的,建構主義教學模式強調以學生為中心,視學生為認知的主體,教師只對學生的意義建構起幫助和促進作用。本節“正弦定理”的教學,將遵循這個原則而進行設計。
四、教學目標:
1、在創設的問題情境中,讓學生從已有的幾何知識和處理幾何圖形的常用方法出發,探索和證明正弦定理,體驗坐標法將幾何問題轉化為代數問題的優越性,感受數學論證的嚴謹性。
2、理解三角形面積公式,能運用正弦定理解決三角形的兩類基本問題,并初步認識用正弦定理解三角形時,會有一解、兩解、無解三種情況。
3、通過對實際問題的探索,培養學生的數學應用意識,激發學生學習的興趣,讓學生感受到數學知識既來源于生活,又服務與生活。
五、教學重點與難點。
教學重點:正弦定理的探索與證明;正弦定理的基本應用。
教學難點:正弦定理的探索與證明。
主體下給于適當的提示和指導。
一、復習引入:
結論:
證明:(向量法)過a作單位向量j垂直于ac,由ac+cb=ab邊同乘以單位向量。
正弦定理:在一個三角形中,各邊和它所對角的正弦的比相等。
本節是“正弦定理”定理的第一節,在備課中有兩個問題需要精心設計。一個是問題的引入,一個是定理的證明。通過兩個實際問題引入,讓學生體會為什么要學習這節課,從學生的“最近發展區”入手進行設計,尋求解決問題的方法。具體的思路就是從解決課本的實際問題入手展開,將問題一般化導出三角形中的邊角關系——正弦定理。因此,做好“正弦定理”的教學既能復習鞏固舊知識,也能讓學生掌握新的有用的知識,有效提高學生解決問題的能力。
1.在教學過程中,我注重引導學生的思維發生,發展,讓學生體會數學問題是如何解決的,給學生解決問題的一般思路。從學生熟悉的直角三角形邊角關系,把銳角三角形和鈍角三角形的問題也轉化為直角三角形的性,從而得到解決,并滲透了分類討論思想和數形結合思想等思想。
2.在教學中我恰當地利用多媒體技術,是突破教學難點的一個重要手段。利用《幾何畫板》探究比值的值,由動到靜,取得了很好的效果,加深了學生的印象。
3.由于設計的內容比較的多,教學時間的超時,這說明我自己對學生情況的把握不夠準確到位,致使教學過程中時間的分配不夠適當,教學語言不夠精簡,今后我一定避免此類問題,爭取更大的進步。
正弦定理教學設計范文(21篇)篇十八
正弦定理是初中數學中比較重要和難理解的部分,很多同學甚至老師都對其感到頭疼。但是,正弦定理不僅是數學中的重要概念,還有著豐富的實際應用。在學習正弦定理后,我從中學到了很多有益的知識和經驗,下面我將分享我的心得體會。
正弦定理是指一個三角形中,邊長和對應的角度的關系公式。其中一個角度的正弦等于與其對邊的長度之一的比例,即sinA=a/b。正弦定理可以通過cosB,cosC的余弦公式而推出,可以方便計算三角形的邊長和角度。對于初學者來說,重要的是能夠理解公式的本質,同時也體會到了科學的推理方法。
第三段:在計算中的應用。
正弦定理在生活和學習中都有很大的應用價值。例如,在航海和導航中,我們經常需要利用正弦定理計算船或車等運動物體的位置和角度。在建筑方面,正弦定理甚至可以計算出大樓、橋梁和塔等構造物的高度和角度。除此之外,正弦定理在數學應用中也是非常重要的,能夠解決許多難題,如解三角函數方程、求角度等。
第四段:學習體會。
在學習正弦定理的過程中,我發現一個重要的問題就是需要對三角函數有清晰的認識。也就是說,在學習正弦定理之前,我們需要認真學習三角函數的其他部分,例如正切和余弦等。同時,不斷練習,多做習題對于記住和掌握公式也是非常有益的。此外,我也學會了在認真理解和熟練應用的同時,將其運用到實際問題的解決中,這不僅可以提高學習興趣,還能拓展解決問題的思路。
第五段:結論。
總體來說,正弦定理不僅是數學中的重要概念,也有廣泛而且實際應用價值。學習正弦定理可以提高數學應用能力和推理思維能力,同時也能減少發生計算錯誤的可能。在學習的過程中,我們需要認真學習和理解每一個公式,多經過練習和應用,最后將其應用到實際問題中。相信一定可以有所收獲,提高自身的學習和應用能力。
正弦定理教學設計范文(21篇)篇十九
教材分析:勾股定理是直角三角形的重要性質,它把三角形有一個直角的"形"的特點,轉化為三邊之間的"數"的關系,它是數形結合的典范。它可以解決許多直角三角形中的計算問題,它是直角三角形特有的性質,是初中數學教學內容重點之一。本節課的重點是發現勾股定理,難點是說明勾股定理的正確性。
學生分析:
1、考慮到三角尺學生天天在用,較為熟悉,但真正能仔細研究過三角尺的同學并不多,通過這樣的情景設計,能非常簡單地將學生的注意力引向本節課的本質。
2、以與勾股定理有關的人文歷史知識為背景展開對直角三角形三邊關系的討論,能激發學生的學習興趣。
設計理念:本教案以學生手中舞動的三角尺為知識背景展開,以勾股定理在古今中外的發展史為主線貫穿課堂始終,讓學生對勾股定理的發展過程有所了解,讓他們感受勾股定理的豐富文化內涵,體驗勾股定理的探索和運用過程,激發學生學習數學的興趣,特別是通過向學生介紹我國古代在勾股定理研究和運用方面的成就,激發學生熱愛祖國,熱愛祖國悠久文化的思想感情,培養他們的`民族自豪感和探究創新的精神。
教學目標:
1、經歷用面積割、補法探索勾股定理的過程,培養學生主動探究意識,發展合理推理能力,體現數形結合思想。
2、經歷用多種割、補圖形的方法驗證勾股定理的過程,發展用數學的眼光觀察現實世界和有條理地思考能力以及語言表達能力等,感受勾股定理的文化價值。
3、培養學生學習數學的興趣和愛國熱情。
4、欣賞設計圖形美。
教學準備階段:
學生準備:正方形網格紙若干,全等的直角三角形紙片若干,彩筆、直角三角尺、鉛筆等。
老師準備:畢達哥拉斯、趙爽、劉徽等證明勾股定理的圖片以及其它有關人物歷史資料等投影圖片。
(一)引入。
同學們,當你每天手握三角尺繪制自己的宏偉藍圖時,你是否想過:他們的邊有什么關系呢?今天我們來探索這一小秘密。(板書課題:探索直角三角形三邊關系)。
(二)實驗探究。
1、取方格紙片,在上面先設計任意格點直角三角形,再以它們的每一邊分別向三角形外作正方形,設網格正方形的邊長為1,直角三角形的直角邊分別為a、b,斜邊為c,觀察并計算每個正方形的面積,以四人小組為單位填寫下表:
(討論難點:以斜邊為邊的正方形的面積找法)。
交流后得出一般結論:(用關于a、b、c的式子表示)。
(三)探索所得結論的正確性。
當直角三角形的直角邊分別為a、b,斜邊為c時,是否一定成立?
1、指導學生運用拼圖、或正方形網格紙構造或設計合理分割(或補全)圖形,去探索本結論的正確性:(以四人小組為單位進行)。
在學生所創作圖形中選擇有代表性的割、補圖,展示出來交流講解,并引導學生進行說理:
如圖2(用補的方法說明)。
師介紹:(出示圖片)畢達哥拉斯,公元前約500年左右,古西臘一位哲學家、數學家。一天,他應邀到一位朋友家做客,他一進朋友家門就被朋友家的豪華的方形大理石地磚的形狀深深吸引住了,于是他立刻找來尺子和筆又量又畫,他發現以每塊大理石地磚的相鄰兩直角邊向三角形外作正方形,它們的面積和等于以這塊大理石地磚的對角線為邊向形外作正方形的面積。于是他回到家里立刻對他的這一發現進行了探究證明……,終獲成功。后來西方人們為了紀念他的這一發現,將這一定理命名為"畢達哥拉斯定理"。1952年,希臘政府為了紀念這位偉大的數學家,特別選用他設計的這種圖形為主圖發行了一枚紀念郵票。(見課本52頁彩圖2—1,欣賞圖片)。
如圖3(用割的方法去探索)。
師介紹:(出示圖片)中國古代數學家們很早就發現并運用這個結論。早在公元前2000年左右,大禹治水時期,就曾經用過此方法測量土地的等高差,公元前1100年左右,西周的數學家商高就曾用"勾三、股四、弦五"測量土地,他們對這一結論的運用至少比古希臘人早500多年。公元200年左右,三國時期吳國數學家趙爽曾構造此圖驗證了這一結論的正確性。他的這個證明,可謂別具匠心,極富創新意識,他用幾何圖形的割、來證明代數式之間的相等關系,既嚴密,又直觀,為中國古代以"形"證"數",形、數統一的獨特風格樹立了一個典范。他是我國有記載以來第一個證明這一結論的數學家。我國數學家們為了紀念我國在這方面的數學成就,將這一結論命名為"勾股定理"。
20xx年,世界數學家大會在中國北京召開,當時選用這個圖案作為會場主圖,它標志著我國古代數學的輝煌成就。
本節課學習的勾股定理用語言敘說為:
1、繼續收集、整理有關勾股定理的證明方的探索問題并交流。
正弦定理教學設計范文(21篇)篇二十
導學案前置,學生是復習的引領者。通過及時批改導學案,發現學生在復習過程中的對知識理解的薄弱之處,對知識應用的欠缺之處。主要存在的問題:對瞬時功率的定義式應用不熟練;書寫動能定理公式不是很熟練,主要表現在對變力做功束手無策。另外,學生剛參加完運動會,興奮之余,學習狀態還需要調整。
1.鞏固強化瞬時功率的計算公式,會運用瞬時功率的公式準確解決問題;
2.鞏固強化摩擦力做功的特點,熟練書寫動能定理公式。
1.精心設計問題,引導學生發現規律。
通過設計問題:物體沿粗糙斜面下滑,求物體下滑過程中摩擦力做的功?讓學生運用功的公式計算出物體下滑過程中摩擦力做的功。教師引導學生對計算結果進行分析,讓學生發現一個重要規律,物體沿斜面下滑摩擦力做的功與物體在相應的水平面上滑動摩擦力做的功是相等的。通過變式訓練題,鞏固這個規律的應用,學生收獲很大。
2.精心設計問題,提升學生對新舊知識的辨析能力。
初中學生學過功率,但是不對功率進行分類,并且力和速度的方向始終同向。高中階段,根據時間長短,把功率分為平均功率和瞬時功率,并且力和速度的方向不在同一直線上。因此,計算瞬時功率時,一定要考慮力和速度的方向夾角。學生受已有知識的影響頗深,很難意識到這個問題。由此我精心設計問題:飛行員抓住秋千桿在豎直面內從高處擺下,求飛行員所受重力的瞬時功率的變化情況?要求學生嚴格按照瞬時功率的定義,計算出各個關鍵位置的重力的瞬時功率。通過計算發現重力的瞬時功率是從零變到不是零,最后再變到零。因此,重力的瞬時功率是先增大后減小,學生感到茅塞頓開。
1.復習課就要放手,讓學生去發現。
導學案前置,讓學生發現問題,展示問題,討論問題,最后解決問題。這樣極大的提高了課堂效率,學生的學習困惑得到了解決,學生對物理學習的自信心有了很大的提升,學生學習物理的積極性更強了。
2.精益求精,不斷改善。
通過本節課的學習,學生能夠正確使用瞬時功率的公式,摩擦力做功的計算更加熟練,題目正確率大幅上升。像這種復習課堂怎么設計,怎么上,我和老教師經常交流,老教師的建議是根據學情,精心設計導學案,調動學生對物理問題的探究欲。響應學校號召,做好導學案,多讓學生講解,真正讓學生做課堂的主人。
正弦定理教學設計范文(21篇)篇二十一
《正弦定理》是人教版教材必修五第一章《解三角形》的第一節內容,也是三角形理論中的一個重要內容,與初中學習的三角形的邊和角的基本關系有密切的聯系。在此之前,學生已經學習過了正弦函數和余弦函數,知識儲備已足夠。它是后續課程中解三角形的理論依據,也是解決實際生活中許多測量問題的工具。因此熟練掌握正弦定理能為接下來學習解三角形打下堅實基礎,并能在實際應用中靈活變通。
二、教學目標。
根據上述教材內容分析,考慮到學生已有的認知結構心理特征及原有知識水平,制定如下教學目標:
知識目標:理解并掌握正弦定理的證明,運用正弦定理解三角形。
能力目標:探索正弦定理的證明過程,用歸納法得出結論,并能掌握多種證明方法。
情感目標:通過推導得出正弦定理,讓學生感受數學公式的整潔對稱美和數學的實際應用價值。
三、教學重難點。
教學重點:正弦定理的內容,正弦定理的證明及基本應用。
教學難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數。
四、教法分析。
依據本節課內容的特點,學生的認識規律,本節知識遵循以教師為主導,以學生為主體的指導思想,采用與學生共同探索的教學方法,命題教學的發生型模式,以問題實際為參照對象,激發學生學習數學的好奇心和求知欲,讓學生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化,并且運用例題和習題來強化內容的掌握,突破重難點。即指導學生掌握“觀察——猜想——證明——應用”這一思維方法。學生采用自主式、合作式、探討式的學習方法,這樣能使學生積極參與數學學習活動,培養學生的合作意識和探究精神。
五、教學過程。
本節知識教學采用發生型模式:
1、問題情境。
此題可運用做輔助線bc邊上的高來間接求解得出。
提問:有沒有根據已提供的數據,直接一步就能解出來的方法?
2、歸納命題。
我們從特殊的三角形直角三角形中來探討邊與角的數量關系:
在如圖rt三角形abc中,根據正弦函數的定義。