教學工作計劃的制定應綜合考慮教材、教法和學生的實際情況,確保教學目標的實現。教學工作計劃中的每個細節都很重要,務必仔細擬定和反復修改。
最新倍數和因數教案(優質21篇)篇一
教科書第25頁,練習四第5~8題。
1、通過練習與對比,使學生發現和掌握求兩個數最小公倍數的一些簡捷方法,進行有條理的思考。
2、通過練習,使學生建立合理的認識結構,形成解決問題的多樣策略。
3、在學生探索與交流的合作過程中,進一步發展學生與同伴合作交流的意識和能力,感受數學與生活的聯系。
1、我們已經掌握了找兩個數的公倍數和最小公倍數的方法,這節課我們繼續鞏固這方面的知識,并能夠利用這些知識解決一些實際問題。
(板書課題:公倍數和最小公倍數練習)
2、填空。
5的倍數有:()
7的'倍數有:()
5和7的公倍數有:()
5和7的最小公倍數是:()
3、完成練習四第5題。
(1)理解題意,獨立找出每組數的最小公倍數。
(2)匯報結果,集體評講。
(3)觀察第一組中兩個數的最小公倍數,看看有什么發現?
每題中的兩個數有什么特征呢?(倍數關系)可以得出什么結論?
(4)第二組中兩個數的最小公倍數有什么特征?(是這兩個數的乘積)
在有些情況下,兩個數的最小公倍數是這兩個數的乘積。
4、完成練習四第6題。
你能運用上一題的規律直接寫出每題中兩個數的最小公倍數嗎?
交流,匯報。
說說你是怎么想的?
1、完成練習四第7題。
(1)理解題意,獨立完成填表。
(2)你是怎樣找到這兩路車第二次同時發車的時間的?
你還有其他方法解決這個問題嗎?(7和8的最小公倍數是56)
2、完成練習四第8題。
(1)理解題意。
你能說說,他們下次相遇,是在幾月幾日嗎?(8月24日)
你是怎樣知道的?
要知道他們下次相遇的日期,其實就是求什么?(6和8的最小公倍數)
通過練習,同學們又掌握了一些比較快的求兩個數最小公倍數的方法,并能運用這些方法解決一些實際問題。
在小組中互相說說自己本節課的收獲。
最新倍數和因數教案(優質21篇)篇二
7--16頁的學習內容。
1.進一步學習求一個數的所有因數和倍數;掌握一般方法,學會用常見的幾種形式表達。
2.經過多次的求解經歷過程,在事實面前讓學生進一步明確因數是可數的,自然得出因數的個數是有限的,其中最大的因數自己;而倍數是無法寫完全,也就是說倍數的個數是無限的,其中最小的倍數也是自己。
掌握求一個數的因數和倍數的常用方法及常用的幾種書寫表達形式。
完整地求出一個數的因數和倍數。
實物投影。
口答:
根據下面算式,說說哪個數是哪個數的倍數,哪個數是哪個數的因數?
4×9=3625×40=100032×7=224。
解答題:
18的因數有哪些?10是哪些數的倍數?
典型例題:
1.教學:
(1)你還能找出18的因數碼?并說出你的找法(要板書)。
(2)小比賽。看誰既快又能完整地把30和36所有因數找出來(基礎練習)?
(3)分享冠軍經驗(介紹方法)。
(4)我們再來一次尋找32和48的所有因數的比賽(基礎練習)?
(5)請你試著把18所有找出的因數表述出來。(如果學生能用常見的兩種表達最好;如果不能需要教師的引導)。
第一種習慣書面表達形式。18的'因數有(有可能是亂的):
第二種集合圖的書面表達形式。18的因數。
(6)通過眼看,自我感覺調整這些因數最好按序排列。
第一種習慣書面表達形式。18的因數有(按大小順序):
第二種集合圖的書面表達形式。18的因數。
(7)做基礎練習第2題。
小結:
1.尋找的方法。
2.能否找全?
3.教學。
(1)讓學生自己嘗試找。
(2)有沒有發什么問題?如何解決?
(3)如何表達?
(4)找出3和5的倍數。
小結:
1.尋找的方法。
2.能否找全?
基礎練習:
1.用盡快的速度找出30、36、32和48的所有因數?
2.填空。30的因數有:36的因數有:
3.5的倍數有:3的倍數。
提高練習:
1.分別寫出17的因數和倍數,再寫出28。
拓展練習:數學小知識:了解完全數。
有的學生認為某個數的最小倍數是0倍,因此最小倍數是0。要向學生強調,小學階段學倍數不涉及到0,因此,某個數的最小倍數應該是它的1倍。
最新倍數和因數教案(優質21篇)篇三
知識與技能、過程與方法:
1、從操作活動中理解因數和倍數的意義,會判斷一個數是不是另一個數的因數或倍數。
2、培養學生抽象、概括的能力,滲透事物之間相互聯系、相互依存的觀點。
3、培養學生的合作意識、探索意識,以及熱愛數學學習的情感。
1、因數與倍數意義以及它們的相互依存關系。
2、尋找一個數的因數或倍數的方法。
教學準備:課件。
教學流程:
流程1:導入新課。
流程2:認識倍數和因數。
流程3:探索求一個數的因數的方法。
流程4:完成試一試,總結一個數因數的特點。
流程5:探索求一個數的倍數的方法。
流程6:完成試一試,總結一個數倍數的特點。
流程7:完成智慧樂園。
流程8:完成質疑樂園。
流程9:數學游戲。
流程11:課堂小結。
流程10:組織學生退場。
第一段:導入新課。
流程1:導入新課。
師:課前我們先來做個腦筋急轉彎,看看誰最聰明?
(學生發表自己的看法)。
今天,我們就把這三個人請到我教室里來好嗎?(課件出示圖片)你能不能以大李為中心,來介紹一下小老和老李。(學生說一說)。
師:我們能不能單獨地來說,大李是爸爸?(不能)為什么?
引出相互依存(板書)。
第二段:認識倍數和因數。
流程2:認識倍數和因數。
1、用課前準備的12張同樣大的正方形紙片拼成一個長方形。前后四人一組。
要求:
(1)、看一共能擺出幾種完全不同的長方形。
(2)、想一想怎樣用乘法算式表示你的擺法。
(3)、為了便于展示,請在你的課本反面來擺。
(學生動手操作、匯報)。
師:請你用乘法算式表示你的擺法?
生:1×12=122×6=123×4=12。
師:為了避免重復,我們可經只選擇其中一個算式。我們以前學過,在乘法算式里,乘號前面和后面的數都叫什么?(因數)等號后面的數叫什么?(積)這里的因數和積是乘法算式各部分的名稱。其實,因數和積之間就存在我們課前提到的相互依存關系。以3×4=12為例,數學上說12是4的倍數,12也是3的倍數,4和3都是12的因數。這里因數和倍數就具有相互依存的關系。不能孤立地說3是因數,也不能孤立地說12的倍數,這就是今天這節課我們研究:倍數和因數。
師:那根據另外兩個乘法算式,同學們會說哪個數是哪個數的倍數,哪個數是哪個數的因數嗎?請同桌相互說一說(學生活動)。
老師這是里有兩道算式,你會說嗎?
8×9=7218÷3=6。
(請學生來說一說)。
師:同學們,倍數、因數指的是兩個自然數之間的一種關系,所以我們一定要說清楚誰是誰的倍數,誰是誰的因數,,老師還要補充說一點,為了方便,我們在研究時,所說的數一般指不是0的自然數。
第三段:探索求倍數和因數的方法。
流程3:探索求一個數的因數的方法。
師:同學們怎樣找一個數的因數呢?同學們愿意獨立思考,嘗試解決嗎?面對新問題,看看誰能挑戰成功。
師:你能找出36所有的因數嗎?請同學們試著在練習本上寫一寫。
(學生活動)學生匯報。
師:從1開始,想哪兩個數相乘得36,我們就可以成對地寫出36的因數,一直找到兩個乘數最接近為止。解決這個問題首先要考慮什么樣的數是36的.因數。如果有兩個數相乘的積是36,那么這兩個數都是36的因數。例如,1×36=36,那么1和36都是36的因數。
師:看看老師的填法和你一樣嗎?
師:求一個數的因數,可以想乘法算式,也可以想除法算式,但都要有序思考,做到不重復、不遺漏。
流程4:完成試一試,總結一個數的因數的特點。
師:下面請同學們用你喜歡或熟悉的方法寫出你自己所喜歡的數字的因數。(學生活動)相機尋找學生板書。
師:通過觀察上面同學所寫的數的因數,你發現了什么?學生說一說(完成表格)。
師小結:一個數最小的因數是1,最大的因數是它本身;一個數因數的個數是有限的。
寫出你的學號的所有因數。
流程5:探索求一個數的倍數的方法。
師:同學們先想一想,什么樣的數是3的倍數?怎樣才能準確地寫出3的倍數?把你的想法和小組里的同學交流一下。(學生活動)。
師:同學們一定能想到,3的倍數就是3和除0以外的一個自然數相乘的積。例如3×1=(3),3×2=(6),3×3=(9),括號里的數都是3的倍數。這樣我們按從小到大的順序,用乘法就可以有條理地說出3的倍數了,它們是:3、6、9、12、15、18。能把3的倍數全部說完嗎?說不完,那應該怎樣表示問題的答案呢?因為3的倍數的個數是無限的,所以寫的時候要借助省略號來完整地表示出結果。
流程6:完成試一試,總結一個數的倍數的特點。
師:下面就請同學們用這種方法分別寫出2的倍數和5的倍數。注意要有順序地思考,并且規范地表示出結果。(學生活動)。
師:老師和同學們核對一下答案,如果出錯了,一定要分析原因,再訂正。(核對答案)。
師:現在我們已經找到了求一個數的倍數的方法,并用這樣的方法分別求出3、2、5的倍數,請同學們觀察上面的例子,你們能發現一個數的倍數有什么特點嗎?大膽地說出你們的想法。(學生活動)。
師小結:仔細觀察,同學們會發現:一個數最小的倍數是它本身,沒有最大的倍數;一個數倍數的個數是無限的。
第四段:深化認識,鞏固方法。
流程7:完成智慧樂園。
師:請看想想做做第3題。先填表,再討論回答下面的問題:表中每欄的每排人數各是怎樣算出來的?排數和每排人數都是24的什么數?在填表的過程中你還受到了什么啟發?(學生活動)。
師:24÷3=8,÷4=6,÷6=4,÷8=3,÷12=2,÷24=1,表中排數和每排人數都是24的因數。在填表的過程中我們會發現一對一對地找一個數的因數比較方便。
流程8:完成質疑樂園。
先判斷對錯,再說一說自己的判斷理由。
第五段:數學游戲。
流程9:數學游戲。
師:請同學們拿出寫有自己學號的卡片,我們一起來做個游戲。看一看,想一想,你卡片上的數是否符合下面的條件,符合的請舉起卡片,揮一揮。(課件出示)我是5,我找我的倍數;(學生活動)我是24,我找我的因數;(學生活動)我是1,我找我的倍數;(學生活動)我是30,我找我的因數。(學生活動)。
第六段:全課總結。
流程10:課堂總結。
師:同學們,這節課我們認識了倍數和因數,探索了找一個數的倍數和因數的方法,根據乘法算式,用這一個數分別乘1、乘2、乘3……可以有順序地找到它的倍數。一個數倍數的個數是無限的,最小的倍數是它本身,沒有最大的倍數。找一個數的因數可以想乘法算式,把一個數寫成兩個數相乘的積,乘數就是這個數的因數;也可以想除法算式,用一個數依次去除以1、2、3……,能得到整數商的,除數和商就是它的因數。寫因數時根據算式有順序的一對一對地寫比較方便,不容易遺漏或重復。一個數的因數的個數是有限的,最小的因數是1,最大的因數是它本身。
流程11:組織下課。
組織學生分批退場。
最新倍數和因數教案(優質21篇)篇四
1.我能理解什么是質數和合數,掌握了判斷質數、合數的方法。
2.我知道100以內的質數,記住了20以內的質數。
3.我能在自主探究中獨立思考,合作探究時暢所欲言。
能理解質數、合數的意義,正確判斷一個數是質數還是合數。
用恰當的方法找出100以內的質數;會給自然數分類。
一、導入新課。
二、檢查獨學。
1.互動分享收獲。
2.質疑探討。
3.試試身手:第23頁做一做。
三、合作探究。
1.小組合作,利用課本24頁的表格,用恰當的方法找出100以內的質數,做一個質數表。
2.展示、交流:你們是怎樣找出100以內質數的?
3.小組討論:
(1)有沒有最大的質數或合數?
(2)根據因數的個數,可把非零自然數分成哪幾類?
4.我能很快熟記20以內的質數。
5.獨立思考:
(1)是不是所有的`質數都是奇數?
(2)是不是所有的奇數都是質數?
(3)是不是所有的合數都是偶數?
(4)是不是所有的偶數都是合數?
6.組內交流。
最新倍數和因數教案(優質21篇)篇五
教材第6頁例3及練習二第3~8題及思考題。
1.通過學習,使學生能自主探究,找出求一個數的倍數的方法。
2.結合具體情境,使學生進一步認識自然數之間存在因數和倍數的關系,掌握求一個數的因數和倍數的方法。
3.初步學會從數學的角度提出問題、理解問題,并能用所學知識解決問題。在解決問題的過程中,培養學生概括、分析和比較的能力,使學生體會數學知識的內在聯系。
重點:掌握求一個數的倍數的方法。
難點:理解因數和倍數兩者之間的關系。
1、探索找倍數的方法。(教學例3)
出示例3:2的倍數有哪些?
師:你會找2的倍數嗎?給你們1分鐘的時間,看誰寫得又對、又快、又多!準備好了嗎?開始!
師:時間到,你寫了多少個2的倍數?生1:15個。生2:24個。
師:大家都是用的什么方法呢?
生1:我是用乘法口訣,一二得二,二二得四……這樣寫下去的。
生2:我也是用乘法,用2去乘1、乘2……
師:哪些同學也是用乘法做的?
師:你們都是用2去乘一個數,所得的積就是2的倍數。還有不同的方法嗎?
生3:我用的'是除法,用2÷2=1,4÷2=2,6÷2=3,……依次除下去。
師:很好!如果給你更長的時間,你能把2的倍數全部寫出來嗎?(不能)
師:為什么?(因為2的倍數有無數個)
師:怎么辦?(用省略號)
師:通過交流,你有什么發現?
引導學生初步體會2的倍數的個數是無限的。
追問:你能用集合圖表示2的倍數嗎?
學生填完后,教師組織學生進行核對。
(4)即時練習。讓學生找出3的倍數和5的倍數,并組織交流。學生舉例時可能會產生錯誤,教師要引導學生根據錯例進行適時剖析。
2、反思提煉。師:從前面找因數和倍數的過程中,你有什么發現?
先讓學生在小組內交流,再組織全班集體交流,通過全班交流,引導學生認識以下三點:
(1)一個數的最小因數是1,最大因數是它本身。
(2)一個數的最小倍數是它本身,沒有最大倍數。
(3)一個數的因數的個數是有限的,一個數的倍數的個數是無限的。
1、指導學生完成教材第7~8頁練習二第3~8題及思考題。
學生獨立完成全部練習后教師組織學生進行集體訂正。
集體訂正時,教師著重引導學生認識以下幾點:
(1)第4題“15的因數有哪些?”和“15是哪些數的倍數”答案是一樣的。
(2)第5題中的第(2)小題是錯的,因為一個數的倍數的個數是無限的,第(4)小題也是錯的,因為在研究因數和倍數時,我們所說的數指的是自然數,不含小數。
(3)思考題:兩數如果都是7(或9)倍數,它們的和也一定是7(或9)的倍數,即如果兩數都是n的倍數,它的和也是n的倍數。
2、利用求倍數的方法解決生活中的實際問題
理解題意,分析解答。
教師提示“2個2個地數,正好數完,說明西瓜的個數是2的倍數,5個5個地數,也正好數完,說明西瓜的個數是5的倍數,所以西瓜的個數同時是2和5的倍數。
交流匯報:2的倍數有2,4,6,8,10,12,14,16,18,20,…
5的倍數有5,10,15,20,25,30,…
2和5共同的倍數有10,20,…所以2和5共同的倍數最小的是10。
答:這些西瓜最少有10個。
1、師:通過本節課的學習,你有什么收獲?(學生交流)
2、讓學生自學“你知道嗎?”
因數和倍數
2×1=22÷2=1
2×2=44÷2=2
2×3=66÷2=3
2×4=88÷2=4
2的倍數有2,4,6,……
一個數的因數的個數是有限的,一個數的倍數的個數是無限的。
最新倍數和因數教案(優質21篇)篇六
蘇教版義務教育教科書《數學五年級下冊第47~48頁整理與練習“回顧與整理”和“練習與應用”第1~7題。
1.使學生加深認識因數和倍數,能找一個數的因數或倍數,進一步認識質數和合數;掌握2、5、3的倍數的特征,進一步認識偶數和奇數;加深理解質因數,能正確分解質因數。
2.使學生能整理因數和倍數的知識內容,感受知識之間的內在聯系;能應用相關概念進行分析、判斷、推理,進一步掌握思考、解決數學問題的方法,積累數學思維的初步經驗,提高分析、推理、判斷等思維能力;加深對數的認識,進一步發展數感。
3.使學生主動參與回顧、整理知識和分析、解決問題等活動,培養樂于思考的品質和與同伴互相交流、傾聽等合作意識和能力;感受數學方面的知識積累和進步,提高學好數學的自信心。
整理、應用因數和倍數的知識。
應用概念正確判斷、推理。
一、揭示課題
談話:最近的數學課,我們學習了哪方面的內容?回憶一下,都學到了哪些知識?
揭題:我們已經學完了因數和倍數這一單元的內容,今天開始主要整理與練習這一單元內容。(板書課題)通過整理與練習,我們要進一多認識因數與倍數,2.5.3的倍數的特征,能熟練掌握找一個數的因數或倍數的方法;能判斷偶數和奇數、質數和合數,了解這些概念之間的聯系與區別,能正確分解質因數,提高對數的特征的認識,加深對數的認識。
二、回顧與整理
1.回顧討論。
出示討論題:
(1)你是怎樣理解因數和倍數的?舉例說明你的認識。
(2)2、5、3的倍數有什么特征?我們是怎樣發現的?
(3)自然數可以怎樣分類,各能分成哪幾類?舉例說說什么是質因數和分解質因數。
(4)什么是兩個數的公因數和最大公因數,公倍數和最小公倍數?
讓學生在小組里討論,結合討論適當記錄自己的認識或例子。
2.交流整理。
圍繞討論題,引導學生展開交流,結合交流板書主要內容。
(1)提問:能說說什么是因數和倍數嗎?可以用例子說明。(結合交流板書一兩個乘法或除法算式)
(指名學生說一說,再集體說一說)
你能找出6的因數嗎?(板書因數)6的倍數呢?(板書倍數)
能說說找一個數的因數或倍數的方法嗎?
說明:一個數的因數可以從小到大一對一對地找,到中間兩個因數之間沒有因數為止;一個數的倍數可以用依次乘1、2、3……這樣的方法找,注意一個數的倍數是無限的,寫一個數的倍數要注意用省略號。
(2)提問:2、5、3的倍數各有什么特征?我們是怎樣發現的?
自然數可以怎樣分類,各可以分成哪幾類?
你能舉出偶數和奇數、質數和合數的一些例子嗎?(學生舉出各類數的例子)
說明:按是不是2的倍數可以把自然數分成偶數和奇數兩類,是2的倍數的是偶數,不是2的倍數的是奇數;按因數的個數可以把自然數分成1和質數、合數三類,只有兩個因數的是質數,有兩個以上因數的是合數,1既不是質數也不是合數。
什么是質因數和分解質因數?6有哪些質因數?怎樣把6分解質因數?(板書式子,并說明其中的質因數)
(3)提問:什么是公因數和最大公因數,什么是公倍數和最小公倍數?
說明:兩個數公有的因數叫公因數,其中最大的叫最大公因數;兩個數公有的倍數叫公倍數,其中最小的叫最小公倍數。
結合交流內容,逐步板書成:
l
質數質因數
合數分解質因數
因數公因數最大公因數
(互相依存)
倍數公倍數最小公倍數
2、5、3的倍數的特征
偶數
奇數
(4)引導:請同學們現在觀察我們整理的這一單元學過的內容,了解知識之間的聯系,同桌互相說說知識是怎樣發展的。
學生互相交流,教師巡視、傾聽。
交流:哪位同學能看黑板上整理的內容,說說我們怎樣逐步認識這些知識的,知識是怎樣發展起來的。
三、練習與應用
1.做“練習與應用”第1題。
指名學生交流,說說每組里因數和倍數關系。
提問:3和7有沒有因數和倍數關系?為什么沒有?
2.做“練習與應用”第2題。
(1)讓學生獨立寫出前四個數的所有因數,指名兩人板演。
交流:你是怎樣找它們的因數的?(檢查板演題)
(2)口答后三個數的因數。
引導:能說出后面每個數的全部因數嗎?(學生口答,教師板書)
提問:一個數的因數有什么特點?
說明:一個數因數的個數是有限的,最小的是1.最大的是它本身。
3.分別說出下面各數的倍數。
581217
分別指名學生說出各數的倍數,教師板書。
提問:為什么要寫省略號?一個數的倍數有什么特點?
說明:一個數倍數的個數是無限的,最小的是它本身,沒有最大的倍數。
4.做“練習與應用”第3題。
(1)讓學生獨立完成填數。
交流:題里各是怎樣填的?(呈現結果)填數時怎樣想的?
提問:哪些數既是3的倍數,又是5的倍數?你是怎樣想的?
同時是2和5的倍數的數有什么特征?
哪些數既是2的倍數,又是5和3的倍數?說說你的判斷方法。
(2)這里哪些數是偶數?奇數呢?
你是怎樣判斷偶數和奇數的?
5.做“練習與應用”第4題。
要求學生獨立思考,自己選出兩張卡片,按各題的要求分別組成兩位數,把能組成的數記錄下來。
交流:同時是5和3的倍數的數有哪些?(板書:30)如果是三位數呢?
(板書:180810)
組成的兩位數中最大的偶數是多少?(板書:80)最小的奇數呢?(板書:13)
6.做“練習與應用”第5題。
讓學生把質數圈出來,在合數下面畫線。
交流:哪些是質數,哪些是合數?(板書成兩類)質數和合數是按什么分的?
說明:質數只有2個因數,合數至少有3個因數。
7.做“練習與應用’’第6題。
讓學生選出質數和偶數。
交流、呈現結果。
提問:觀察表里選出的質數和偶數,所有的質數都是奇數嗎?請舉出一個具體例子。
所有的合數都是偶數嗎?你能舉例子說明嗎?
指出:如果要說明一個結論是錯誤的,只要舉一個反例。比如,要判斷質數都是奇數的說法是錯的,只要舉出質數2是偶數這個例子。這里質數2是偶數就是一個反例。要判斷合數都是偶數是錯的,也只要舉一個反例,比如合數9就是奇數。
8.下面的說法正確嗎?
(1)大于0的自然數不是奇數就是偶數。
(2)大于0的自然數不是質數就是合數。
(3)奇數都是質數,偶數都是合數。
(4)自然數中最小的偶數是2,最小的合數是4。
(5)一個數本身既是它的因數,又是它的倍數。
9.做“練習與應用”第7題。
(1)讓學生填空,指名板演。交流并確認結果。
提問:這里填寫的質數都叫積的什么數?為什么稱它是積的質因數?
說明:這里把合數寫成這種質數相乘的形式,叫什么?
(2)把30、42分別分解質因數。
學生完成,交流板書,檢查訂正。
四、全課總結
提問:這節課主要復習的哪些內容?你有哪些收獲?
最新倍數和因數教案(優質21篇)篇七
1、通過“活動建構”,使學生領會因數和倍數的意義;通過獨立思考、交流談論,初步掌握求一個數所有因數的方法。
2、在解決問題的過程中,培養學生思維的有序性、條理性,增強學生的探究意識和求索精神。
3、通過教學,讓學生從中感受到數學思考的魅力,體驗到數學學習的樂趣。
最新倍數和因數教案(優質21篇)篇八
蘇教版義務教育教科書《數學》五年級下冊第30~32頁例1、例2和試一試、例3和試一試練一練,第35頁練習五第1~4題。
1.使學生認識倍數和因數,能判斷兩個自然數間的因數和倍數關系;學會找一個數的因數和倍數的方法,能按順序找出100以內自然數的所有因數,10以內自然數的所有倍數;了解一個數的因數、倍數的特點。
2.使學生經歷探索求一個數的因數或倍數的方法、一個數的因數和倍數特點的過程,體會數學知識、方法的內在聯系,能有條理地展開思考,培養觀察、比較,以及分析、推理和抽象、概括等思維能力,發展數感。
3.使學生主動參與操作、思考、探索等活動,獲得解決問題的成功感受,樹立學好數學的信心,養成樂于思考、勇于探究等良好品質。
認識因數和倍數。
求一個數的因數、倍數的方法。
小黑板、準備12個同樣大的正方形學具。
一、操作引入,認識意義
1.操作交流。
引導:你能用12個小正方形拼成一個長方形嗎?請同桌兩人合作拼一拼,看看每排擺幾個,擺了幾排,想想有幾種拼法,用算式把你的拼法表示出來。 學生操作,用算式表示,教師巡視。
交流:你有哪些拼法?請你說一說,并交流你表示的算式。
結合學生交流,呈現不同拼法,分別板書出積是12的三道乘法算式(包括可以板書除法算式)。
2.認識意義。
(2)啟發:現在讓你看另外兩個算式,你能說一說哪個是哪個的因數,哪個是哪個的'倍數嗎?同桌互相說說看。
(3) 小結:從上面可以看出,在整數乘法算式里,兩個乘數都是積的因數,積是兩個乘數的倍數。它們之間的關系是相互依存的。這就是我們今天學習的新內容:因數和倍數。(板書課題)在研究因數和倍數時,所說的數一般指不是o的自然數。
最新倍數和因數教案(優質21篇)篇九
(父子、母子、母女關系)我和你們的關系是?(師生關系)。
在數學中,數與數之間也存在著多種關系,這節課,我們一起研究兩數之間的因數與倍數關系。
(二)探究新知-理解因數和倍數的意義。
教學例1:
1.觀察算式的特點,進行分類。
(1)仔細觀察算式的特點,你能把這些算式分類嗎?
(2)交流學生的分類情況。(預設:學生會根據算式的計算結果分成兩類)。
第一類是被除數、除數、商都是整數;第二類是被除數、除數都是整數,而商不是整數。
2.明確因數和倍數的意義。
(1)同學們,在整數除法中,如果商是整數而沒有余數,我們就說被除數是除數的倍數,除數是被除數的因數。例如,12÷2=6,我們就說12是2的倍數,2是12的因數。12÷6=2,我們就說12是6的倍數,6是12的因數。
(2)在第一類算式中找一個算式,說一說,誰是誰的因數?誰是誰的倍數?
(3)強調一點:為了方便,在研究倍數與因數的時候,我們所說的數指的是自然數(一般不包括0)。
3.理解因數和倍數的依存關系。
(1)獨立完成教材第5頁“做一做”。
(2)我們能不能說“4是因數”“24是倍數”呢?表述時應該注意什么?
4.理解一個數的“因數”和乘法算式中的“因數”的區別以及一個數的“倍數”與“倍”的區別。
(1)今天學的一個數的“因數”與以前乘法算式中的“因數”有什么區別呢?
課件出示:
乘法算式中的“因數”是相對于“積”而言的,可以是整數,也可以是小數、分數;而一個數的“因數”是相對于“倍數”而言的,它只能是整數。
(2)今天學的“倍數”與以前的“倍”又有什么不同呢?
“倍數”是相對于“因數”而言的,只適用于整數;而“倍”適用于小數、分數、整數。
(3)交流匯報。
(三)探究新知-找一個數的因數。
教學例2:
1.探究找18的因數的方法。
(1)18的因數有哪些?你是怎么找的?
(2)交流方法。
預設:方法一:根據因數和倍數的意義,通過除法算式找18的因數。
因為18÷1=18,所以1和18是18的因數。
因為18÷2=9,所以2和9是18的因數。
因為18÷3=6,所以3和6是18的.因數。
方法二:根據尋找哪兩個整數相乘的積是18,尋找18的因數。
因為1×18=18,所以1和18是18的因數。
因為2×9=18,所以2和9是18的因數。
因為3×6=18,所以3和6是18的因數。
2.明確18的因數的表示方法。
(1)我們怎樣來表示18的因數有哪些呢?怎樣表示簡潔明了?
(2)交流方法。
預設:列舉法,18的因數有:1,2,3,6,9,18。
集合圖的方法(如下圖所示)。
3.練習找一個數的因數。
(1)你能找出30的因數有哪些嗎?36的因數呢?
(2)怎樣找才能不遺漏、不重復地找出一個數的所有因數?
(四)探究新知-找一個數的倍數。
教學例3:
1.探究找2的倍數的方法。
(1)2的倍數有哪些?你是怎么找的?
(2)想方法:利用乘法算式找2的倍數。
因為2×1=2,所以2是2的倍數。
因為2×2=4,所以4是2的倍數。
因為2×3=6,所以6是2的倍數。……。
(3)2的倍數能寫完嗎?你能繼續找嗎?寫不完怎么辦?
(4)根據前面的經驗,試著表示出2的倍數有哪些?(預設:列舉法、集合圖的方法)。
2.練習找一個數的倍數。
你能找出3的倍數有哪些嗎?5的倍數呢?
(五)我的發現-因數與倍數的特征。
舉例子,找規律,勾畫知識點,讀一讀。
預設:一個數的因數的個數是有限的,最小的因數是1,最大的因數是它本身;一個數的倍數的個數是無限的,沒有最大的倍數,最小的倍數是它本身。1是所有非零自然數的因數。
(六)智慧樂園。
1.在練習本上完成下列填空題。(獨立完成后,師訂正答案)。
一個數的最大因數是17,這個數是(),它的最小的因數是()。
一個數的最小倍數是17,這個數是(),它()最大的倍數,17的倍數的個數是().
一個數既是12的因數,又是12的倍數,這個數是()。
2.在練習本上完成下列判斷題。(獨立完成后,師訂正答案)。
(1)在算式6×4=24中,6是因數,24是倍數。()。
(2)15的倍數一定大于15。()。
(3)1是除0以外所有自然數的因數。()。
(4)40以內6的倍數有12、18、24、30、36這5個。()。
(5)34的最小倍數是34;34的最小因數是17。()。
(6)1.2是3的倍數。()。
(七)全課總結,交流收獲。
這節課我們學了哪些知識?你有什么收獲?
(八)布置作業。
完成課時練第3、4頁,提交家校本。
最新倍數和因數教案(優質21篇)篇十
1、理解倍數和因數之間的關系是相互依存的。
2、根據具體的問題情景,能正確確定某個非零自然數的所有因數。
3、使學生體味數學的趣味性,激發學生對數學的探究熱情。
理解倍數和因數之間的關系是相互依存的,能正確求一個數的倍數和因數。
能正確有序求一個數的倍數和因數。
師:同學們,在我們的日常生活中,人與人之間存在著許多相互依存的關系,如:丁爸是丁丁的爸爸,丁丁是丁爸的兒子。丁哥是丁丁的哥哥,丁丁是丁哥的弟弟。其實在我們的數學王國里,數與數之間也存在著這種相互依存的關系,請看大屏幕,認識這些數嗎?(課件出示:0,1,2,3,4,5)。
生:自然數。
(課件去“0”)。
(研究范圍:非零自然數中)。
(一)找一個數的因數。
1、(課件出示例1情境圖)。
師:請看大屏幕,這是36人列隊操練,每排人數要一樣多,可以怎樣排列?同學們可以先同桌討論,作好記錄,再匯報。(引導生說:可以站幾排,每排站幾個。)。
根據這些信息我們能列出哪些乘法算是呢?
板書:1×36=362×18=363×12=364×9=366×6=361。
師:在4×9=36這個算式中,4和9叫什么?(因數)36是?(積),這是我們以前學的乘法各部分名稱。其實,在整數乘法中,因數和積之間還存在一種相互依存的關系,也就是說4是36的因數,36是4的倍數。,同樣,在這個算式中,我們還可以說9是36的?(因數),36是9的?(倍數)。
2、誰能像老師這樣,說一說3×12=36他們之間的關系。(先請一個學生站起來說一說)。
4、你能根據左邊的乘法算式寫出相應的除法算式嗎?(師根據生的回答板書)。
我們現在就以36÷4=9為例,你能從這個除法算式中說一說誰是誰的倍數,誰是誰的因數?(說好后再讓學生逐個說出除法算式中的關系)。
5、剛才同學們都說4是36的因數,那能單獨說4是因數嗎?(生發表意見)。
到底可以不可以這樣說,請看大屏幕,(課件出示:4×9=362×2=4),請你說說4是倍數還是因數?(課件著重強調數字“4”)。
引導學生說:第一個式子中,4是36的因數,第二個式子中4是2的'倍數。(課件出示結果)。
師:從剛才的回答中你明白了什么?(引導生知道:因數和倍數是相互依存的,不能單獨存在)。
6、師:下面,請同學們看這個式子,說一說誰是誰的倍數,誰是誰的因數。(課件出示:4×5=2014÷3=53+6=96-4=20.3×2=0.6)。
生回答后,引導生知道:通過后三個算式使生進一步理解,倍數和因數都是建立在乘法或除法的基礎之上的,他們的研究范圍在非零自然數中。
7、你能根據上面所寫的乘法算式或除法算式說出36的所有因數嗎?
師;那么你知道怎樣找一個數的所有因數呢?(同桌商討后,指名回答,課件出示。)。
找一個數的所有因數時,可以先寫出用這個數作積的所有乘法算式,或者寫出用這個數作被除數的所有除法算式,再寫出它的所有因數。注意,最好按照順序從小到大來寫,這樣不容易遺漏。
8、師:現在,我們來練習一下。同學們分組有序的找出15、16、24、25的所有因數嗎?打開練習本,快速的寫出來,開始。(師巡視指導困難學生)。
寫完后生匯報,并說出你是怎樣找出它們的因數的,課件出示。
9、引導歸納概括一個數的因數的特點。
師:看來同學們已經充分掌握了找一個數因數的方法,觀察剛才我們找的這些數的因數,你有什么發現嗎?(出示合作學習要求和目的)下面請小組合作,仔細觀察、比較我們找出的這些數的因數,你從這幾個例子中發現了什么?請把你的發現和小組的成員說一說,注意:當一個同學在說的時候,其他成員一定要認真聽,不要打斷別人的發言,開始。
(二)找一個數的倍數。
1、師:找了這么多數的因數,現在我們來找一個數的倍數,好不好?
(課件出示例2)。
生寫,師巡視。
2、指明匯報后,并說出你是如何找一個數的倍數的?
歸納(出示找一個數的倍數的方法):找一個數的倍數從它本身開始,用非零自然數1,2,3···去乘,就可以得到。
那請大家觀察這些數的倍數,你又能發現什么呢?同桌兩個先互相說一說,開始吧。
生發言。
4、引導學生發現:一個數的倍數個數是無限的,其中最小的倍數是它本身,沒有最大的倍數。(課件出示)。
師;同學們認識了倍數和因數,探索了因數和倍數的特點,并且能正確求一個數因數和倍數的,其實,這些這些知識就在課本125、126頁,打開書本,看一看書上的老師是如何說的,并把需要填寫的部分填寫以下。
這節課同學們通過自己的努力又發現了數學海洋里的新知識,真讓老師感到開心,在我們今后的學習中希望大家繼續帶著這些熱情和精神去探索、去發現。
書本127頁練習二十1、2、3題(課件出示)。
(非零自然數中)。
1×36=3636÷1=3636÷36=1。
2×18=3636÷2=1836÷18=2。
3×12=3636÷3=1236÷12=3。
4×9=3636÷4=936÷9=4。
6×6=3636÷6=6。
36的因數有:1、2、3、4、6、9、12、18、36.
最新倍數和因數教案(優質21篇)篇十一
在教完本單元,并測試聯系后,我發現"倍數和因數"這一內容與原來教材比有了很大的不同,也出現了很多教學的困惑.老教材中是先建立整除的概念,在此基礎上認識因數倍數。
本單元主要采用的小組或同桌進行交流,合作學習。在教學過程中教師的引導起著很關鍵的作用,因為對學生來說,這是一個完全陌生的知識,而且是比較抽象的概念性知識,有些知識就必須由教師來教學,很直白的告訴學生,這是不可避免的。而能讓學生去探索發現的,教師的引導很重要,在讓學生去交流時一定要明確要求,在學習過程中,找一個數的所有因數很困難,因為很多學生都會無序的去找,這樣就造成遺漏。
一、“自然數的定義”讓我困惑。
老教材里只說像1,2,3,4,5,6......這樣的數叫自然數,而新教材則把0也放進去了,接下去又說研究(零除外的)自然數的倍數和因數。讓我有點搞不清楚.又如書上什么地方都沒出現素數的說法了,試卷聯系上卻有了,要不是新老教材都教過,對什么是素數可要去大查一番了.
二、為什么本冊書上在講“倍數與因數”的時候不提整除。
我的頭腦也許還受以前書的影響,我認為說到“倍數與因數”必須要談到整除,似乎只有談到了整除,才有資格說到“倍數與因數”,但是我在實際上課的過程中,也沒體會到書上在這里不提整除到底好處在哪兒,而作業中卻出現了,到底是教呢,還是不教。真感到困惑。
五年級上冊第一單元"倍數與因數"教學反思來自本站。
最新倍數和因數教案(優質21篇)篇十二
1.理解因數和倍數的意義以及兩者之間相互依存的關系,掌握找一個數的因數和倍數的方法。
2.在探究的過程中體會數學知識之間的內在聯系,在解決問題的過程中培養學生思維的有序性和條理性。
3.培養學生的探索意識以及熱愛數學學習的情感。
1.理解因數和倍數的意義以及兩者之間相互依存的關系。
2.掌握找一個數的因數和倍數的方法。
教學課件。
(一)創設情境,引入新課。
人與人之間存在著許多種關系,你們和爸爸(媽媽)的關系是?
(父子、母子、母女關系)我和你們的關系是?(師生關系)。
在數學中,數與數之間也存在著多種關系,這節課,我們一起研究兩數之間的因數與倍數關系。
(二)探究新知-理解因數和倍數的意義。
教學例1:
1.觀察算式的特點,進行分類。
(1)仔細觀察算式的特點,你能把這些算式分類嗎?
(2)交流學生的分類情況。(預設:學生會根據算式的計算結果分成兩類)。
第一類是被除數、除數、商都是整數;第二類是被除數、除數都是整數,而商不是整數。
2.明確因數和倍數的意義。
(1)同學們,在整數除法中,如果商是整數而沒有余數,我們就說被除數是除數的倍數,除數是被除數的因數。例如,12÷2=6,我們就說12是2的倍數,2是12的因數。12÷6=2,我們就說12是6的倍數,6是12的因數。
(2)在第一類算式中找一個算式,說一說,誰是誰的因數?誰是誰的倍數?
(3)強調一點:為了方便,在研究倍數與因數的時候,我們所說的數指的是自然數(一般不包括0)。
3.理解因數和倍數的依存關系。
(1)獨立完成教材第5頁“做一做”。
(2)我們能不能說“4是因數”“24是倍數”呢?表述時應該注意什么?
4.理解一個數的“因數”和乘法算式中的“因數”的區別以及一個數的“倍數”與“倍”的區別。
(1)今天學的一個數的“因數”與以前乘法算式中的“因數”有什么區別呢?
課件出示:
乘法算式中的“因數”是相對于“積”而言的,可以是整數,也可以是小數、分數;而一個數的“因數”是相對于“倍數”而言的,它只能是整數。
(2)今天學的“倍數”與以前的“倍”又有什么不同呢?
“倍數”是相對于“因數”而言的,只適用于整數;而“倍”適用于小數、分數、整數。
(3)交流匯報。
(三)探究新知-找一個數的因數。
教學例2:
1.探究找18的因數的方法。
(1)18的因數有哪些?你是怎么找的?
(2)交流方法。
預設:方法一:根據因數和倍數的意義,通過除法算式找18的因數。
因為18÷1=18,所以1和18是18的因數。
因為18÷2=9,所以2和9是18的因數。
因為18÷3=6,所以3和6是18的因數。
方法二:根據尋找哪兩個整數相乘的積是18,尋找18的因數。
因為1×18=18,所以1和18是18的因數。
因為2×9=18,所以2和9是18的因數。
因為3×6=18,所以3和6是18的因數。
2.明確18的因數的表示方法。
(1)我們怎樣來表示18的因數有哪些呢?怎樣表示簡潔明了?
(2)交流方法。
預設:列舉法,18的因數有:1,2,3,6,9,18。
集合圖的方法(如下圖所示)。
3.練習找一個數的因數。
(1)你能找出30的因數有哪些嗎?36的因數呢?
(2)怎樣找才能不遺漏、不重復地找出一個數的所有因數?
(四)探究新知-找一個數的倍數。
教學例3:
1.探究找2的倍數的方法。
(1)2的倍數有哪些?你是怎么找的?
(2)想方法:利用乘法算式找2的倍數。
因為2×1=2,所以2是2的倍數。
因為2×2=4,所以4是2的倍數。
因為2×3=6,所以6是2的倍數。……。
(3)2的倍數能寫完嗎?你能繼續找嗎?寫不完怎么辦?
(4)根據前面的經驗,試著表示出2的倍數有哪些?(預設:列舉法、集合圖的方法)。
2.練習找一個數的倍數。
你能找出3的倍數有哪些嗎?5的倍數呢?
(五)我的發現-因數與倍數的特征。
舉例子,找規律,勾畫知識點,讀一讀。
預設:一個數的因數的個數是有限的`,最小的因數是1,最大的因數是它本身;一個數的倍數的個數是無限的,沒有最大的倍數,最小的倍數是它本身。1是所有非零自然數的因數。
(六)智慧樂園。
1.在練習本上完成下列填空題。(獨立完成后,師訂正答案)。
一個數的最大因數是17,這個數是(),它的最小的因數是()。
一個數的最小倍數是17,這個數是(),它()最大的倍數,17的倍數的個數是().
一個數既是12的因數,又是12的倍數,這個數是()。
2.在練習本上完成下列判斷題。(獨立完成后,師訂正答案)。
(1)在算式6×4=24中,6是因數,24是倍數。()。
(2)15的倍數一定大于15。()。
(3)1是除0以外所有自然數的因數。()。
(4)40以內6的倍數有12、18、24、30、36這5個。()。
(5)34的最小倍數是34;34的最小因數是17。()。
(6)1.2是3的倍數。()。
(七)全課總結,交流收獲。
這節課我們學了哪些知識?你有什么收獲?
(八)布置作業。
完成課時練第3、4頁,提交家校本。
最新倍數和因數教案(優質21篇)篇十三
知識與技能、過程與方法:
從操作活動中理解因數和倍數的意義,會判斷一個數是不是另一個數的因數或倍數。
2、培養學生抽象、概括的能力,滲透事物之間相互聯系、相互依存的觀點。
3、培養學生的合作意識、探索意識,以及熱愛數學學習的情感。
1、因數與倍數意義以及它們的相互依存關系。
2、尋找一個數的因數或倍數的方法。
教學準備:課件
教學流程:
流程1:導入新課
流程2:認識倍數和因數
流程3:探索求一個數的因數的方法
流程4:完成“試一試”,總結一個數因數的特點
流程5:探索求一個數的倍數的方法
流程6:完成“試一試”,總結一個數倍數的特點
流程7:完成智慧樂園
流程8:完成質疑樂園
流程9:數學游戲
流程11:課堂小結
流程10:組織學生退場
第一段:導入新課
流程1:導入新課
師:課前我們先來做個腦筋急轉彎,看看誰最聰明?
(學生發表自己的看法)
今天,我們就把這三個人請到我教室里來好嗎?(課件出示圖片)你能不能以大李為中心,來介紹一下小老和老李。(學生說一說)
師:我們能不能單獨地來說,大李是爸爸?(不能)為什么?
引出相互依存(板書)
第二段:認識倍數和因數
流程2:認識倍數和因數
(一)學習因數和倍數的概念
1、用課前準備的12張同樣大的正方形紙片拼成一個長方形。前后四人一組
要求:
(1)、看一共能擺出幾種完全不同的長方形。
(2)、想一想怎樣用乘法算式表示你的擺法。
(3)、為了便于展示,請在你的課本反面來擺。
(學生動手操作、匯報)
師:請你用乘法算式表示你的擺法?
生:1×12=12 2×6=12 3×4=12
師:為了避免重復,我們可經只選擇其中一個算式。我們以前學過,在乘法算式里,乘號前面和后面的數都叫什么?(因數)等號后面的數叫什么?(積)這里的因數和積是乘法算式各部分的名稱。其實,因數和積之間就存在我們課前提到的相互依存關系。以3×4=12為例,數學上說12是4的倍數,12也是3的倍數,4和3都是12的因數。這里因數和倍數就具有相互依存的關系。不能孤立地說3是因數,也不能孤立地說12的倍數,這就是今天這節課我們研究:倍數和因數。
師:那根據另外兩個乘法算式,同學們會說哪個數是哪個數的倍數,哪個數是哪個數的因數嗎?請同桌相互說一說(學生活動)。
老師這是里有兩道算式,你會說嗎?
8×9=72 18÷3=6
(請學生來說一說)
師:同學們,倍數、因數指的是兩個自然數之間的一種關系,所以我們一定要說清楚誰是誰的倍數,誰是誰的因數,老師還要補充說一點,為了方便,我們在研究時,所說的數一般指不是0的自然數。
第三段:探索求倍數和因數的方法
流程3:探索求一個數的因數的方法
師:同學們怎樣找一個數的因數呢?同學們愿意獨立思考,嘗試解決嗎?面對新問題,看看誰能挑戰成功。
師:你能找出36所有的因數嗎?請同學們試著在練習本上寫一寫。
(學生活動)學生匯報
師:從1開始,想哪兩個數相乘得36,我們就可以成對地寫出36的因數,一直找到兩個乘數最接近為止。解決這個問題首先要考慮什么樣的數是36的因數。如果有兩個數相乘的積是36,那么這兩個數都是36的因數。例如,1×36=36,那么1和36都是36的因數。
師:看看老師的填法和你一樣嗎?
師:求一個數的因數,可以想乘法算式,也可以想除法算式,但都要有序思考,做到不重復、不遺漏。
流程4:完成“試一試”,總結一個數的因數的特點
師:下面請同學們用你喜歡或熟悉的方法寫出你自己所喜歡的數字的因數。(學生活動)相機尋找學生板書。
師:通過觀察上面同學所寫的數的因數,你發現了什么?學生說一說(完成表格)
師小結:一個數最小的因數是1,最大的因數是它本身;一個數因數的個數是有限的。
寫出你的學號的所有因數。
流程5:探索求一個數的倍數的方法
師:同學們先想一想,什么樣的數是3的倍數?怎樣才能準確地寫出3的倍數?把你的想法和小組里的同學交流一下。(學生活動)
師:同學們一定能想到,3的倍數就是3和除0以外的一個自然數相乘的積。例如3×1=(3),3×2=(6),3×3=(9),括號里的數都是3的倍數。這樣我們按從小到大的順序,用乘法就可以有條理地說出3的倍數了,它們是:3、6、9、12、15、18。能把3的倍數全部說完嗎? 說不完,那應該怎樣表示問題的答案呢? 因為3 的倍數的個數是無限的,所以寫的時候要借助省略號來完整地表示出結果。
流程6:完成“試一試”,總結一個數的倍數的特點
師:下面就請同學們用這種方法分別寫出2的倍數和5的倍數。注意要有順序地思考,并且規范地表示出結果。(學生活動)
師:老師和同學們核對一下答案,如果出錯了,一定要分析原因,再訂正。(核對答案)
師:現在我們已經找到了求一個數的倍數的方法,并用這樣的方法分別求出3、2、5的倍數,請同學們觀察上面的例子,你們能發現一個數的倍數有什么特點嗎?大膽地說出你們的想法。(學生活動)
師小結:仔細觀察,同學們會發現:一個數最小的.倍數是它本身,沒有最大的倍數;一個數倍數的個數是無限的。
第四段:深化認識,鞏固方法
流程7:完成智慧樂園
師:請看想想做做第3題。先填表,再討論回答下面的問題: 表中每欄的“每排人數”各是怎樣算出來的?“排數”和“每排人數”都是24的什么數?在填表的過程中你還受到了什么啟發?(學生活動)
師: 24÷3=8,÷4=6,÷6=4,÷8=3,÷12=2,÷24=1,表中“排數”和“每排人數”都是24的因數。在填表的過程中我們會發現一對一對地找一個數的因數比較方便。
流程8:完成質疑樂園
先判斷對錯,再說一說自己的判斷理由。
第五段:數學游戲
流程9:數學游戲
師:請同學們拿出寫有自己學號的卡片,我們一起來做個游戲。看一看,想一想,你卡片上的數是否符合下面的條件,符合的請舉起卡片,揮一揮。(課件出示)我是5,我找我的倍數;(學生活動)我是24,我找我的因數;(學生活動)我是1,我找我的倍數;(學生活動)我是30,我找我的因數。(學生活動)
第六段:全課總結
流程 10:課堂總結
師:同學們,這節課我們認識了倍數和因數,探索了找一個數的倍數和因數的方法,根據乘法算式,用這一個數分別乘1、乘2、乘3……可以有順序地找到它的倍數。一個數倍數的個數是無限的,最小的倍數是它本身,沒有最大的倍數。找一個數的因數可以想乘法算式,把一個數寫成兩個數相乘的積,乘數就是這個數的因數;也可以想除法算式,用一個數依次去除以1、2、3……能得到整數商的,除數和商就是它的因數。寫因數時根據算式有順序的一對一對地寫比較方便,不容易遺漏或重復。一個數的因數的個數是有限的,最小的因數是1,最大的因數是它本身。
流程11:組織下課
組織學生分批退場。
(1)請學號數不少于三個因數的同學先退場;
(2)請學號數只有兩個因數的同學退場;
(3)請學號數只有一個因數的同學跟我一起離場。
最新倍數和因數教案(優質21篇)篇十四
:p70~72的例題及相應的試一試、想想做做中的1—3題。
1、使學生初步理解倍數和因數的含義,知道倍數和因數相互依存的關系。
2、使學生依據倍數和因數的含義以及已有乘除法知識,通過嘗試、交流等活動,探索并掌握找一個數倍數和因數的方法,能在1—100的自然數中找出10以內某個數的所有倍數,找出100以內某個數的所有因數。
3、使學生在認識倍數和因數以及找一個數的倍數和因數的過程中進一步感受數學知識的內在聯系,提高數學思考的水平。
:理解因數和倍數的含義,知道它們的關系是相互依存的。
探索并掌握找一個數的因數的方法。
:12個小正方形片、每個學生的學號紙。
1、操作活動。
(1)明確操作要求:用12個同樣大的正方形拼成一個長方形。每排擺幾個?擺了幾排?用乘法算式把自己的擺法記錄下來。
(2)整理、交流,分別板書4×3=1212×1=126×2=12。
2、通過剛才的學習,我們發現用12個同樣的小正方形可以擺出3種不同的長方形,由此,還得出3道不一樣的乘法算式。4×3=12可以說12是4的倍數,12也是3的倍數;反過來,4和3都是12的因數。
(1)那其它兩道算式,你能說出誰是誰的倍數嗎?你能說出誰是誰的因數嗎?
指名回答后,教師追問:如果說12是倍數,2是因數,是否可以?為什么?
小結:倍數和因數是指兩個數之間的關系,他們是相互依存的。
指出:為了方便,我們在研究倍數和因數時,所說的數都是指不是0的自然數。
二、探索找一個數倍數的方法。
1、從4×3=12中,知道12是3的倍數。3的倍數還有哪些?從小到大,你能找到幾個?同桌交流自己的思考方法。
3、議一議:你發現找3的倍數有什么小竅門?
明確:可以按從小到大的順序,依次用1、2、3……與3相乘,乘得的積就是3的倍數。
4、試一試:你能用學會的竅門很快地寫出2和5的倍數嗎?
生獨立完成,集體交流。注意用……表示結果。
5、觀察上面的3個例子,你發現一個數的倍數有什么特點?
根據學生的交流歸納:一個數的倍數中,最小的是它本身,沒有最大的倍數,一個數倍數的個數是無限的。
6、做“想想做做”第2題。
1、學會了找一個數倍數的方法,再來研究求一個數的因數。
你能找出36的所有因數嗎?
2、小組合作,把36的所有因數一個不漏的寫出來,看看哪個組挑戰成功。并盡可能把找的方法寫出來。教師巡視,發現不同的找法。
3、出示一份作業:對照自己找出的36的因數,你想對他說點什么?
4、交流整理找36因數的方法,明確:哪兩個數相乘的積等于36,那么這兩個數就是36的因數。(一對一對地找,又要按次序排列)。
板書:(有序、全面)。正因為思考的有序,才會有答案的全面。
5、試一試:請你用有序的思考找一找15和16的因數。
指名寫在黑板上。
一個數的因數最小是1,最大是它本身,一個數因數的個數是有限的。
7、“想想做做”第3題。
生獨立填寫,交流。觀察表格,表中的排數和每排人數與24有怎樣的關系。
四、課堂總結:學到這兒,你有哪些收獲?
五、游戲:“看誰反應快”。
規則:學號符合下面要求的請站起來,并舉起學號紙。
(1、)學號是5的倍數的。
(2、)誰的學號是24的因數。
(4、)誰的學號是1的倍數。
2、在得出這些乘法算式以后,先根據4×3=12說明12是3和4的倍數,3和4都是12的因數,使學生初步體會倍數和因數的含義。在學生初步理解的基礎上,再讓他們舉一反三,結合另兩道乘法算式說一說。在這一個環節中,我設計了一個練習。即“根據下面的算式,同桌互相說說誰是誰的倍數,誰是誰的因數”第一個是20×3=60,根據學生回答后質疑“能不能說3是因數,60是倍數”,從而強調倍數和因數是相互依存的。第二個是36÷4=9,讓學生根據除法算式說出誰是誰的因數,誰是誰的倍數,并追問:你是怎么想的?使學生知道把它轉化為乘法算式去說。
在學生有了倍數、因數的初步感受后,再向學生說明:我們在研究倍數和因數時,所說的數一般指不是0的自然數,明確了因數和倍數的研究范圍。
3、p71例一:找3的倍數,先讓學生獨立思考,“你還能再寫出幾個3的倍數?你是怎樣想的?”在學生交流的基礎上,適時提出:什么樣的數就是3的倍數?你能按照從小到大的順序有條理地說出3的倍數嗎?使學生明確:找3的倍數時,可以按從到大的`順序,依次用1、2、3……與3相乘,而每次乘得的積都是3的倍數。在此基礎上,引導學生進一步思考:你能把3的倍數全都說完嗎?從而使學生學會規范地表示一個數的所有倍數,并初步體會到一個數的個數是無限的。隨后,讓學生試著找出2和5的倍數,并正確表達2和5的所有倍數。最后引導學生觀察寫出的3、2和5的所有倍數,發現一個數的倍數的特點,即:一個數的最小的倍數是它本身,沒有最大的倍數。一個數的倍數的個數是無限的。
4、例二:找36的所有因數,準備讓學生獨立嘗試,但這部分內容對學生來說是個難點,所以我采用了四人小組合作的方式讓學生試著找出36的所有因數。在找36的因數時,無論想乘法算式還是想除法算式,學生一般都從無序到有序,從有重復或遺漏到不重復不遺漏。所以,我在教學時允許他們經歷這樣的過程。先按自己的思路、用自己的方法寫36的因數,能寫幾個就寫幾個,是什么順序就什么順序。然后在交流中互相評價,讓他們知道一組一組地找比較方便,可以利用乘法算式,按一個因數從小到大的順序,同時又讓他們掌握按次序地書寫。此外,結合例題和試一試,通過比較和歸納,使學生明確:一個數的因數的個數是有限的,一個數的因數中最小的是1,最大的是它本身。
5、教材p72第2題讓學生解決實際問題在表里填數,把4依次乘1、2、3、……得出“應付元數”,然后思考下面的問題,可以使學生進一步認識把4依次乘1,2,3,……所得的積,就是4的倍數,進一步理解找倍數的方法。第3題也是解決實際問題填寫表里的數,并提出問題讓學生思考,使學生明確兩個相乘的數都是它們積的因數,求一個數的所有因數,可以想乘法一對一對地找出來,理解找一個數的因數的方法。
為了提高學生學習興趣,鞏固所學的知識。最后安排了一個游戲,讓學生在游戲中進一步練習找一個數倍數或因數的方法。
最新倍數和因數教案(優質21篇)篇十五
[教學內容]。
數的世界。
[教學目標]。
1、結合具體情境,認識自然數和整數,聯系乘法認識倍數和因數。??。
2、探索找一個數的倍數的方法,能在1-100的自然數中,找出10以內某個自然數的所有倍數.
3.培養學生綜合應用的能力。
教具準備。
多媒體課件、圖片。
[教學重、難點]。
探索找一個數的倍數的方法,能在1-100的自然數中,找出10以內某個自然數的所有倍數。
[教學過程]。
創設“水果店”的情境,呈現了生活中的數有自然數、負數、小數。在比較中認識自然數、整數,使對數的認識進一步系統化。
先讓學生觀察情境圖,說說圖中有哪些數,并給它們分類。
學生匯報觀察結果,通過比較認識自然數、整數,使學生對數的認識進一步系統化。
1、在解決書上提出的問題的過程中引出算式。
5×4=20(元)。
以這個乘法算式為例說明倍數和因數的含義,即20是4的倍數,20也是5的倍數,4是20的因數,5也是20的因數。引導學生認識倍數與因數,體會倍數與因數的含義。
在利用乘法算式說明倍數和因數的含義的基礎上,出示一個除法算式,如:18÷6=3啟發學生思考:根據整數除法算式能不能確定兩個數之間的倍數關系。
說明:在研究倍數和因數,范圍限制為不是零的自然數。
2、你寫我說。
讓學生同桌間互相寫算式,再說一說。算式可以是乘法算式,也可以是除法算式。
三、找一找。
1、判斷題目中給的數是不是7的倍數。
先讓學生用自己的方法判斷,再組織學生交流,使學生逐步體會可以通過想乘法算式或除法算式的方法來判斷。
2、找7的倍數:
四、練一練:
第2題:先讓學生自己找一找4的倍數和6的倍數,并用不同的符號做好記號。然后組織學生交流,并讓學生說說找倍數的方法。最后,說說哪幾個數既是???4的倍數有是6的倍數。
第3題:先讓學生獨立寫一寫,再組織學生交流各自的方法,并在交流比較的過程中體會怎樣做到不重復、不遺漏。體會到像這樣找一個數的倍數,一般用乘法想比較方便。
[板書設計]。
像0、1、2、3、4、5、…這樣的數是自然數。
像-3、-2、-1、0、1、2、…這樣的數是整數。
5×4=20(元)??????20是4和5的倍數。
第2課時。
[教學內容]。
2、5的倍數特征。
[教學目標]。
1、經歷探索2、5倍數的特征的過程,理解2、5倍數的特征,能判斷一個數是不是2或5的倍數。
2、知道奇數、偶數的含義,能判斷一個數是奇數或是偶數。
3、在觀察、猜測和討論過程中,提高探究問題的能力。
[教學重、難點]。
探索2,5的倍數的特征。
[教學準備]。
多媒體課件1到100的數字表格。
[教學過程]。
一、5的倍數的特征的探究。
讓學生在100以內的數表中找出5的倍數,用自己的方式做記號,并觀察、思考5的倍數有什么特征。在此基礎上組織學生交流。
引導學生歸納。
5的倍數的特征:個位上是0或5的數是5的倍數。
試一試:
嘗試用5的倍數特征來判斷一個數是不是5的倍數。
二、2的倍數的特征的探究。
讓學生在100以內的數表中找出2的倍數,用自己的方式做記號,并觀察、思考2的倍數有什么特征。在此基礎上組織學生交流。
引導學生歸納2的倍數的特征:
個位上是0、2、4、6、8的數是2的倍數。
在學生理解2的倍數的特征后再揭示偶數、奇數的含義,并進行你問我答的。
判斷練習。
偶數:是2的倍數的數叫做偶數。
奇數:不是2的倍數的數叫做奇數。
四、練一練:
第2題:引導學生先獨立思考,然后組織學生交流自己的思考方法。在引導學生判斷時,應根據2、5的倍數特征說明理由。如“因為85不是2的倍數,所以不能正好裝完”;又如:“因為85是5的倍數,所以能正好裝完。”
五、數學游戲:
這是圍繞“2、5的倍數的特征”設計的數學游戲,通過游戲加深學生對2、5的倍數的特征的理解。
[板書設計]。
2、5的倍數的特征。
5的倍數的特征:個位上是0或5的數是5的倍數。
2的倍數的特征:個位上是0、2、4、6、8的數是2的倍數。
是2的倍數的數叫偶數。
不是2的倍數的數叫奇數。
第3課時。
[教學內容]。
[教學目標]。
1、經歷探索3倍數的特征的過程,理解3倍數的特征,能判斷一個數是不是3的倍數。
2、發展分析、比較、猜測、驗證的能力。
3、滲透集合思想和不完全歸納法。
[教學重、難點]發展分析、比較、猜測、驗證的能力。
[教具準備]。
多媒體課件和1到100的數字表格。
[教學過程]。
一、3的倍數的特征的猜想。
我們研究了2、5的倍數的特征,那么3的倍數有什么特征呢?引導學生提出猜想。學生可能會猜想:個位上能被3整除的數能被3整除等,老師引導學生進行討論、研究。
二、3的倍數的特征的探究。
3的倍數的特征每個數位的各個數字加起來是3的倍數。
試一試:
嘗試用3的倍數特征來判斷一個數是不是3的倍數。
三、練一練:
第2題:
讓學生準備幾張卡片:3、0、4、5邊擺邊想,再交流討論思考的過程。
(1)30、45、54(2)30、54?(3)30、45?(4)30。
四、實踐活動:
[板書設計]。
3的倍數的特征:這個數各位數字之和是3的倍數。
第4課時。
[教學目標]。
1、用小正方形拼長方形的活動中,體會找一個數的因數的方法,提高有條理思考的習慣和能力。
2、在1-100的自然數中,能找到某個自然數的所有因數。
3、培養學生的分析能力和不完全歸納的數學思想。
[教學重、難點]。
用小正方形拼長方形的活動中,體會找一個數的因數的方法,提高有條理思考的習慣和能力。
[教學準備]。
多媒體課件和邊長是1厘米的小正方形紙片。
[教學過程]。
1。動手拼長方形。
用12個小正方形拼成長方形有幾種拼法。讓學生自己先嘗試著拼一拼,再交流不同的拼法。
學生一般會用乘法思路思考:哪兩個數相乘等于12?然后找出:
1×12、2×6、3×4。這種思路就是找一個數的因數的基本方法,要引導學生關注有序思考,并體會一個數的因數個數是有限的。
2。試一試。
找因數的基本練習:找9和15的因數。讓學生獨立完成,注意引導學生有序思考。
3.練一練。
第2題:先讓學生自己找一找18的因數和21的因數,并用不同的符號做好記號,然后讓學生說說找因數的方法。最后,說說哪幾個數既是18的因數,又是21的因數。
第3題;
利用數形結合,進一步體會找因數的方法。
第5題:可以引導學生用找因數的方法進行思考,鼓勵學生將想到的排列方法列出來,在交流的基礎上,使學生經歷有條理的思考過程。48=1×48=2×24=3×16=4×12=6×8,48有10個因數,就有10種排法。如每行12人,排4行;每行4人,排12行等。37只有兩個因數,只有兩種排法。
【板書設計】。
找因數。
面積是12的長方形有:6種圖形????????1×12=12。
2×6=12。
3×4=12。
第5課時。
[教學內容]找質數。
[教學目標]。
1、用小正方形拼長方形的活動中,經歷探索質數與合數的過程,理解質數和合數的意義。
2、能正確判斷質數和合數。
3、在研究質數的過程中豐富對數學發展的認識,感受數學文化的魅力。
[教學重、難點]。
1、用小正方形拼長方形的活動中,經歷探索質數與合數的過程,理解質數和合數的意義。
[教學準備]。
多媒體課件和邊長是1厘米的小正方形紙片。
[教學過程]。
一、動手拼長方形,揭示質數、合數的意義。
1、用小正方形拼成長方形有幾種拼法。讓學生自己先嘗試著拼一拼,邊拼邊填寫書上的表格。
2、引導學生觀察并提出問題:“這些小正方形有的只能拼成一種長方形,有的能拼成兩種或兩種以上的長方形,為什么?”
3、揭示質數、合數的意義。
組織學生觀察、比較、分析逐步發現特征,并把幾個自然數分類,揭示質數和合數的意義。
從概念出發理解“1既不是質數,也不是合數。”
二、討論判斷質數、合數的方法。
1、嘗試判斷:2、8、9、13、51、37、91、52是質數還是合數。
先讓學生獨立判斷,再組織交流“怎樣判斷一個數是質數還是合數”
2、歸納方法:
只要找到一個1和本身以外的因數,這個數就是合數。如果除了1和它本身找不到其他的因數,這個數就是質數。
三、探索活動:
第1題:
用“篩法”找100以內的質數。引導學生有步驟、有目的地操作、觀察和交流,找出100以內的質數。
介紹這種方法是兩千多年前希臘數學家提出的研究質數的方法,稱為“篩法”。現在隨著計算機的發展,這種操作方法可以編成程序讓計算機進行操作。這樣,可以使學生了解數學發展的歷史,感受到數學文化的魅力,豐富學生對數學發展的認識,激起學生探究知識的欲望和興趣。
第2題:
本題引導學生通過操作、觀察,探索規律。
第(1)、(2)題,學生會發現這些質數都分布在第1列和第5列,為什么?
[板書設計]。
找質數。
一個數除了1和它本身以外還有別的因數,這個數就叫合數。?????????????????????????????一個數只有1和它本身兩個因數,這個數叫做質數。
1既不是質數,也不是合數。
第6課時。
[教學內容]數的奇偶性。
[教學目標]。
1、嘗試用“列表”“畫示意圖”等解決問題的策略發現規律,運用數的奇偶性解決生活中的一些簡單問題。
2、經歷探索加法中數的奇偶性變化的過程,在活動中發現加法中數的奇偶性變化規律,在活動中體驗研究的方法,提高推理能力。
[教學重、難點]。
1、嘗試用“列表”“畫示意圖”等解決問題的策略發現規律,運用數的奇偶性解決生活中的一些簡單問題。
2、經歷探索加法中數的奇偶性變化的過程,在活動中發現加法中數的奇偶性變化規律,在活動中體驗研究的方法,提高推理能力。
[教學過程]。
活動1:利用數的奇偶性解決一些簡單的實際問題。
讓學生嘗試解決問題,尋找解決問題的策略,利用解決問題的策略發現規律,教師適當進行“列表”“畫示意圖”等解決問題策略的指導。
試一試:
本題是讓學生應用上述活動中解決問題的策略嘗試自己解決問題,最后的結果是:翻動10次,杯口朝上;翻動19次,杯口朝下。解決問題后,讓學生以“硬幣”為題材,自己提出問題、解決問題,還可以開展游戲活動。
活動2:探索奇數、偶數相加的規律。
[
[板書設計]。
數的奇偶性。
例子:???????????????????結論:
最新倍數和因數教案(優質21篇)篇十六
(非零自然數中)。
1×36=3636÷1=3636÷36=1。
2×18=3636÷2=1836÷18=2。
3×12=3636÷3=1236÷12=3。
4×9=3636÷4=936÷9=4。
6×6=3636÷6=6。
36的因數有:1、2、3、4、6、9、12、18、36.
最新倍數和因數教案(優質21篇)篇十七
第6課時。
1、嘗試用“列表”“畫示意圖”等解決問題的策略發現規律,運用數的奇偶性解決生活中的一些簡單問題。
2、經歷探索加法中數的奇偶性變化的過程,在活動中發現加法中數的奇偶性變化規律,在活動中體驗研究的方法,提高推理能力。
1、嘗試用“列表”“畫示意圖”等解決問題的策略發現規律,運用數的奇偶性解決生活中的一些簡單問題。
2、經歷探索加法中數的奇偶性變化的過程,在活動中發現加法中數的奇偶性變化規律,在活動中體驗研究的方法,提高推理能力。
活動1:利用數的奇偶性解決一些簡單的實際問題。
讓學生嘗試解決問題,尋找解決問題的策略,利用解決問題的策略發現規律,教師適當進行“列表”“畫示意圖”等解決問題策略的指導。
本題是讓學生應用上述活動中解決問題的策略嘗試自己解決問題,最后的結果是:翻動10次,杯口朝上;翻動19次,杯口朝下。解決問題后,讓學生以“硬幣”為題材,自己提出問題、解決問題,還可以開展游戲活動。
活動2:探索奇數、偶數相加的規律。
[板書設計]。
數的奇偶性。
12+34=48偶數+偶數=偶數。
11+37=48奇數+奇數=偶數。
12+11=23奇數+偶數=奇數。
最新倍數和因數教案(優質21篇)篇十八
第四課時。
:1、經歷探索3的倍數特征的過程,理解3的倍數的特征,能正確判斷一個數是不是3的倍數。
2、在觀察、猜測和小組合作學習討論的過程中,提高探究問題的能力。
:1、經歷探索3的倍數特征的過程,理解3的倍數的特征,能正確判斷一個數是不是3的倍數。
2、在觀察、猜測和小組合作學習討論的過程中,提高探究問題的能力。
:圖片。
師:看來只觀察個位不能確定是不是3的倍數,那么3的倍數到底有什么特征呢?今天我們共同來研究。(揭示課題)。
師:先請在下表中找出3的倍數,并做上記號。(教師出示百以內數表,學生人手一張。在學生的活動后,教師組織學生進行交流,并呈現學生已圈出3的倍數的百以內的數表。)(如下圖)。
師:請觀察這個表格,你發現3的倍數什么特征呢,把你的發現與同桌交流一下。
學生同桌交流后,再組織全班交流。
生1:我發現10以內的數只有3、6、9能被3整除。
生2:我發現不管橫的看或豎的看,3的倍數都是隔兩個數出現一次。
生3:我全部看了一下,剛才前面這位同學的猜想是不對的,3的倍數個位上0~9這十個數字都有可能。
師:個位上的數字沒有什么規律,那么十位上的數有規律嗎?
生:也沒有規律,1~9這些數字都出現了。
師:其他同學還有什么發現嗎?
生:我發現3的倍數按一條一條斜線排列很有規律。
師:你觀察的角度與其他同學不同,那么每條斜線上的數有規律嗎?
生:從上往下觀察,連續兩數都是十位數增加1,而個位數減少1。
師:十位數加1、個位數減1組成的數與原來的數有什么相同的地方?
生:我發現“3”的那條斜線,另外兩個數12和21的十位和個位上的數字加起來都等于3。
師:這是一個重大發現,其他斜線呢?
生1:我發現“6”的那條斜線上的數,兩個數字加起來的和都等于6。
生2:“9”的那條斜線上的數,兩個數字加起來的和都等于9。
生3:我發現另外幾列,除了邊上的30、60、90兩個數字的和是3、6、9,另外的數兩個數字的和是12、15、18。
師:現在誰能歸納一下3的倍數有什么特征呢?
生:一個數各個數位上數字之和等于3、6、9、12、15、18等,這個數就一定是3的倍數。
生:一個數各個數位上數字之和是3的倍數,這個數就一定是3的倍數。
師:剛才是從100以內數中發現了規律,得出了3的倍數的特征,如果是三位數甚至更大的數,3的倍數的特征是否也相同呢?請大家再找幾個數來驗證一下。
學生先自己寫數并驗證,然后小組交流,得出了同樣的結論。
練習:第7頁的1、2題。
個性化教學思路。
:學生的判斷方法就很多樣了,學生對后面的這種方法接受很快,也很樂意運用。但在實際作業中,我感到學生對3的特征的運用不是很主動,不象2和5的特征來得快,似乎有些想不到。因此,要加強練習。
最新倍數和因數教案(優質21篇)篇十九
教學內容:
蘇教版義務教育教科書《數學五年級下冊第47~48頁整理與練習“回顧與整理”和“練習與應用”第1~7題。
教學目標:
1.使學生加深認識因數和倍數,能找一個數的因數或倍數,進一步認識質數和合數;掌握2、5、3的倍數的特征,進一步認識偶數和奇數;加深理解質因數,能正確分解質因數。
2.使學生能整理因數和倍數的知識內容,感受知識之間的內在聯系;能應用相關概念進行分析、判斷、推理,進一步掌握思考、解決數學問題的方法,積累數學思維的初步經驗,提高分析、推理、判斷等思維能力;加深對數的認識,進一步發展數感。
3.使學生主動參與回顧、整理知識和分析、解決問題等活動,培養樂于思考的品質和與同伴互相交流、傾聽等合作意識和能力;感受數學方面的知識積累和進步,提高學好數學的自信心。
教學重點:
教學難點:
應用概念正確判斷、推理。
教學過程:
一、揭示課題。
談話:最近的數學課,我們學習了哪方面的內容?回憶一下,都學到了哪些知識?
揭題:我們已經學完了因數和倍數這一單元的內容,今天開始主要整理與練習這一單元內容。(板書課題)通過整理與練習,我們要進一多認識因數與倍數,2.5.3的倍數的特征,能熟練掌握找一個數的因數或倍數的方法;能判斷偶數和奇數、質數和合數,了解這些概念之間的聯系與區別,能正確分解質因數,提高對數的特征的認識,加深對數的認識。
二、回顧與整理。
1.回顧討論。
出示討論題:
(1)你是怎樣理解因數和倍數的?舉例說明你的認識。
(2)2、5、3的倍數有什么特征?我們是怎樣發現的?
(3)自然數可以怎樣分類,各能分成哪幾類?舉例說說什么是質因數和分解質因數。
(4)什么是兩個數的公因數和最大公因數,公倍數和最小公倍數?
讓學生在小組里討論,結合討論適當記錄自己的認識或例子。
2.交流整理。
圍繞討論題,引導學生展開交流,結合交流板書主要內容。
(1)提問:能說說什么是因數和倍數嗎?可以用例子說明。(結合交流板書一兩個乘法或除法算式)。
(指名學生說一說,再集體說一說)。
你能找出6的因數嗎?(板書因數)6的倍數呢?(板書倍數)。
能說說找一個數的因數或倍數的方法嗎?
說明:一個數的因數可以從小到大一對一對地找,到中間兩個因數之間沒有因數為止;一個數的倍數可以用依次乘1、2、3……這樣的方法找,注意一個數的倍數是無限的,寫一個數的倍數要注意用省略號。
(2)提問:2、5、3的倍數各有什么特征?我們是怎樣發現的?
自然數可以怎樣分類,各可以分成哪幾類?
你能舉出偶數和奇數、質數和合數的一些例子嗎?(學生舉出各類數的例子)。
說明:按是不是2的倍數可以把自然數分成偶數和奇數兩類,是2的倍數的是偶數,不是2的倍數的是奇數;按因數的個數可以把自然數分成1和質數、合數三類,只有兩個因數的是質數,有兩個以上因數的是合數,1既不是質數也不是合數。
什么是質因數和分解質因數?6有哪些質因數?怎樣把6分解質因數?(板書式子,并說明其中的質因數)。
(3)提問:什么是公因數和最大公因數,什么是公倍數和最小公倍數?
說明:兩個數公有的因數叫公因數,其中最大的叫最大公因數;兩個數公有的倍數叫公倍數,其中最小的叫最小公倍數。
結合交流內容,逐步板書成:
l
質數質因數。
合數分解質因數。
(互相依存)。
2、5、3的倍數的特征。
偶數。
奇數。
(4)引導:請同學們現在觀察我們整理的這一單元學過的內容,了解知識之間的聯系,同桌互相說說知識是怎樣發展的。
學生互相交流,教師巡視、傾聽。
交流:哪位同學能看黑板上整理的內容,說說我們怎樣逐步認識這些知識的,知識是怎樣發展起來的。
三、練習與應用。
1.做“練習與應用”第1題。
指名學生交流,說說每組里因數和倍數關系。
提問:3和7有沒有因數和倍數關系?為什么沒有?
2.做“練習與應用”第2題。
(1)讓學生獨立寫出前四個數的所有因數,指名兩人板演。
交流:你是怎樣找它們的因數的?(檢查板演題)。
(2)口答后三個數的因數。
引導:能說出后面每個數的全部因數嗎?(學生口答,教師板書)。
提問:一個數的因數有什么特點?
說明:一個數因數的個數是有限的,最小的是1.最大的是它本身。
3.分別說出下面各數的倍數。
581217。
分別指名學生說出各數的倍數,教師板書。
提問:為什么要寫省略號?一個數的倍數有什么特點?
說明:一個數倍數的個數是無限的,最小的是它本身,沒有最大的倍數。
4.做“練習與應用”第3題。
(1)讓學生獨立完成填數。
交流:題里各是怎樣填的?(呈現結果)填數時怎樣想的?
提問:哪些數既是3的倍數,又是5的倍數?你是怎樣想的?
哪些數既是2的倍數,又是5和3的倍數?說說你的判斷方法。
(2)這里哪些數是偶數?奇數呢?
你是怎樣判斷偶數和奇數的?
5.做“練習與應用”第4題。
要求學生獨立思考,自己選出兩張卡片,按各題的要求分別組成兩位數,把能組成的數記錄下來。
交流:同時是5和3的倍數的數有哪些?(板書:30)如果是三位數呢?
(板書:180810)。
組成的兩位數中最大的偶數是多少?(板書:80)最小的奇數呢?(板書:13)。
6.做“練習與應用”第5題。
讓學生把質數圈出來,在合數下面畫線。
交流:哪些是質數,哪些是合數?(板書成兩類)質數和合數是按什么分的?
說明:質數只有2個因數,合數至少有3個因數。
7.做“練習與應用’’第6題。
交流、呈現結果。
提問:觀察表里選出的質數和偶數,所有的質數都是奇數嗎?請舉出一個具體例子。
所有的合數都是偶數嗎?你能舉例子說明嗎?
指出:如果要說明一個結論是錯誤的,只要舉一個反例。比如,要判斷質數都是奇數的說法是錯的,只要舉出質數2是偶數這個例子。這里質數2是偶數就是一個反例。要判斷合數都是偶數是錯的,也只要舉一個反例,比如合數9就是奇數。
8.下面的說法正確嗎?
(1)大于0的自然數不是奇數就是偶數。
(2)大于0的自然數不是質數就是合數。
(3)奇數都是質數,偶數都是合數。
(4)自然數中最小的偶數是2,最小的合數是4。
(5)一個數本身既是它的因數,又是它的倍數。
9.做“練習與應用”第7題。
(1)讓學生填空,指名板演。交流并確認結果。
提問:這里填寫的質數都叫積的什么數?為什么稱它是積的質因數?
說明:這里把合數寫成這種質數相乘的形式,叫什么?
(2)把30、42分別分解質因數。
學生完成,交流板書,檢查訂正。
四、全課總結。
提問:這節課主要復習的哪些內容?你有哪些收獲?
將本文的word文檔下載到電腦,方便收藏和打印。
最新倍數和因數教案(優質21篇)篇二十
【知識點】:
1、認識自然數和整數,聯系乘法認識倍數與因數。
像0,1,2,3,4,5,6,…這樣的數是自然數。
像-3,-2,-1,0,1,2,3,…這樣的數是整數。
2、我們只在自然數(零除外)范圍內研究倍數和因數。
3、倍數與因數是相互依存的關系,要說清誰是誰的倍數,誰是誰的因數。
補充【知識點】:
一個數的倍數的個數是無限的。
探索活動(一)2,5的倍數的特征。
【知識點】:
1、2的倍數的特征。
個位上是0,2,4,6,8的數是2的倍數。
2、5的倍數的特征。
個位上是0或5的數是5的倍數。
3、偶數和奇數的定義。
是2的倍數的數叫偶數,不是2的倍數的數叫奇數。
4、能判斷一個數是不是2或5的倍數。能判斷一個非零自然數是奇數或偶數。
補充【知識點】:
既是2的倍數,又是5的倍數的特征。個位上是0的數既是2的倍數,又是5的倍數。
探索活動(二)3的倍數的特征。
【知識點】:
1、3的倍數的特征。
一個數各個數位上的數字的和是3的倍數,這個數就是3的倍數。
2、能判斷一個數是不是3的倍數。
補充【知識點】:
1、同時是2和3的倍數的特征。
個位上的數是0,2,4,6,8,并且各個數位上的數字的和是3的倍數的數,既是2的倍數,又是3的倍數。
2、同時是3和5的倍數的特征。
個位上的數是0或5,并且各個數位上的數字的和是3的倍數的數,既是3的倍數,又是5的倍數。
3、同時是2,3和5的倍數的特征。
個位上的數是0,并且各個數位上的數字的和是3的倍數的數,既是2和5的倍數,又是3的倍數。
找因數。
【知識點】:
在1~100的自然數中,找出某個自然數的所有因數。方法:運用乘法算式,思考:哪兩個數相乘等于這個自然數。
補充【知識點】:
一個數的因數的個數是有限的。其中最小的因數是1,最大的因數是它本身。
找質數。
【知識點】:
一個數只有1和它本身兩個因數,這個數叫作質數。
一個數除了1和它本身以外還有別的因數,這個數叫作合數。
3、判斷一個數是質數還是合數的方法:
一般來說,首先可以用“2,5,3的倍數的特征”判斷這個數是否有因數2,5,3;如果還無法判斷,則可以用7,11等比較小的質數去試除,看有沒有因數7,11等。只要找到一個1和它本身以外的因數,就能肯定這個數是合數。如果除了1和它本身找不到其他因數,這個數就是質數。
數的奇偶性。
【知識點】:
1、運用“列表”“畫示意圖”等方法發現規律:
小船最初在南岸,從南岸駛向北岸,再從北岸駛回南岸,不斷往返。通過“列表”“畫示意圖”的方法會發現“奇數次在北岸,偶數次在南岸”的規律。
2、能夠運用上面發現的數的奇偶性解決生活中的一些簡單問題。
3、通過計算發現奇數、偶數相加奇偶性變化的規律:
偶數+偶數=偶數奇數+奇數=偶數。
最新倍數和因數教案(優質21篇)篇二十一
4、培養學生的觀察能力。
1、出示主題圖,讓學生各列一道乘法算式。
2、師:看你能不能讀懂下面的算式?
出示:因為2×6=12。
所以2是12的因數,6也是12的因數;
12是2的倍數,12也是6的倍數。
3、師:你能不能用同樣的方法說說另一道算式?
(指名生說一說)。
師:你有沒有明白因數和倍數的關系了?
那你還能找出12的其他因數嗎?
4、你能不能寫一個算式來考考同桌?學生寫算式。
師:誰來出一個算式考考全班同學?
5、師:今天我們就來學習因數和倍數。(出示課題:因數倍數)。
齊讀p12的注意。
(一)找因數:
1、出示例1:18的因數有哪幾個?
學生嘗試完成:匯報。
(18的因數有:1,2,3,6,9,18)。
師:說說看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一對一對找,如1×18=18,2×9=18…)。
師:18的因數中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。
2、用這樣的方法,請你再找一找36的因數有那些?
匯報36的因數有:1,2,3,4,6,9,12,18,36。
師:你是怎么找的?
舉錯例(1,2,3,4,6,6,9,12,18,36)。
師:這樣寫可以嗎?為什么?(不可以,因為重復的因數只要寫一個就可以了,所以不需要寫兩個6)。
仔細看看,36的因數中,最小的'是幾,最大的是幾?
看來,任何一個數的因數,最小的一定是(),而最大的一定是()。
3、你還想找哪個數的因數?(18、5、42……)請你選擇其中的一個在自練本上寫一寫,然后匯報。
4、其實寫一個數的因數除了這樣寫以外,還可以用集合表示:如。
18的因數。
小結:我們找了這么多數的因數,你覺得怎樣找才不容易漏掉?
從最小的自然數1找起,也就是從最小的因數找起,一直找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。
(二)找倍數:
1、我們一起找到了18的因數,那2的倍數你能找出來嗎?
匯報:2、4、6、8、10、16、……。
師:為什么找不完?
你是怎么找到這些倍數的?(生:只要用2去乘1、乘2、乘3、乘4、…)。
那么2的倍數最小是幾?最大的你能找到嗎?
2、讓學生完成做一做1、2小題:找3和5的倍數。
匯報3的倍數有:3,6,9,12。
師:這樣寫可以嗎?為什么?應該怎么改呢?
改寫成:3的倍數有:3,6,9,12,……。
你是怎么找的?(用3分別乘以1,2,3,……倍)。
5的倍數有:5,10,15,20,……。
師:表示一個數的倍數情況,除了用這種文字敘述的方法外,還可以用集合來表示。
2的倍數3的倍數5的倍數。
師:我們知道一個數的因數的個數是有限的,那么一個數的倍數個數是怎么樣的呢?
(一個數的倍數的個數是無限的,最小的倍數是它本身,沒有最大的倍數)。
我們一起來回憶一下,這節課我們重點研究了一個什么問題?你有什么收獲呢?
完成練習二1~4題。