教案的編寫應(yīng)該注重教師的教學(xué)經(jīng)驗和教學(xué)方法的不斷提升。接下來,大家可以共同學(xué)習(xí)一些小學(xué)教案的優(yōu)秀案例,相信會對你的教學(xué)工作有所裨益。
小學(xué)因數(shù)和倍數(shù)的教案(專業(yè)14篇)篇一
尊敬的各位領(lǐng)導(dǎo)、老師大家上午好:我們團隊所執(zhí)教的是《因數(shù)和倍數(shù)》。
一、說教材:
《因數(shù)和倍數(shù)》是小學(xué)人教版課程標(biāo)準(zhǔn)實驗教材五年級下冊第二單元的內(nèi)容,也是小學(xué)階段“數(shù)與代數(shù)”部分最重要的知識之一。《因數(shù)和倍數(shù)》的學(xué)習(xí),是在初步認(rèn)識自然數(shù)的基礎(chǔ)上,探究其性質(zhì)。其中涉及到的內(nèi)容屬于初等數(shù)論的基本內(nèi)容,相當(dāng)抽象。在這一內(nèi)容的編排上與以往教材不同,沒有數(shù)學(xué)化的語言給“整除”下定義,而是在本課時通過乘法算式借助整除的模式na=b直接給出因數(shù)與位數(shù)的概念。這節(jié)課是因數(shù)與倍數(shù)的概念的引入,為本單元最后的內(nèi)容,以及第四單元的最大公因數(shù),最小公倍數(shù)提供了必須且重要的鋪墊。
根據(jù)教材所處的地位和前后關(guān)系,確定了以下目標(biāo):
知識技能目標(biāo):
掌握因數(shù)倍數(shù)的概念,理解因數(shù)與倍數(shù)的意義,掌握找一個數(shù)因數(shù)與倍數(shù)的方法。
情感,價值目標(biāo):培養(yǎng)學(xué)生合作、觀察、分析和抽象概括能力,體會教學(xué)內(nèi)容的奇妙、有趣,產(chǎn)生對數(shù)學(xué)的好奇心和求知欲。
教學(xué)重點和難點:理解倍數(shù)和因數(shù)的意義,掌握找出一個數(shù)因數(shù)和倍數(shù)的方法。
二、學(xué)情分析:
學(xué)生在平時學(xué)習(xí)中缺少主動性,一部分學(xué)生怕困難,缺乏獨立思考的習(xí)慣,同時考慮問題也不夠全面。在本堂課的教學(xué)中,主要調(diào)動學(xué)生學(xué)習(xí)的積極性,提高學(xué)生課堂學(xué)習(xí)的參與性,體驗成功的樂趣,通過學(xué)生的親自探索和合作交流,來達到學(xué)習(xí)知識,掌握所學(xué)知識的目的。同時感受數(shù)學(xué)中的奧妙。
三、教法與學(xué)法指導(dǎo)。
當(dāng)今社會,人類的語言離不開素質(zhì)教育,而實施素質(zhì)教育必須“以學(xué)生為本”課堂教學(xué)要圍繞培養(yǎng)學(xué)生的探索精神、創(chuàng)新精神出發(fā),為全面提高學(xué)生的綜合素質(zhì)打下一定的基礎(chǔ)。本節(jié)課根據(jù)學(xué)生的認(rèn)知能力與心理特征來進行教學(xué)策略和方法的設(shè)計。
1、遵循學(xué)生主體,老師主導(dǎo),自主探究,合作交流為主線的理念,利用學(xué)生對乘法的運算理解概念。
2、小組合作討論法。以學(xué)生討論,交流,互相評價,促成學(xué)生對找一個數(shù)的因數(shù)和倍數(shù)的方法進行優(yōu)化處理,提升。鞏固學(xué)生方法表達的完整性,有效性,避免學(xué)生只掌握方法的理解,而不能全面的正確的表達。
四,教學(xué)過程。
1、揭示主題。
老師直接揭示主題,大膽創(chuàng)新,打破了傳統(tǒng)的為了導(dǎo)入而導(dǎo)入的教學(xué)模式。為學(xué)生的自主合作學(xué)習(xí)提供了開放的空間。
2、合作交流,理解因數(shù),倍數(shù)的概念及其意義。
教師出示前置性作業(yè),小組內(nèi)交流,匯報學(xué)習(xí)成果,教師適時點撥,真正把課堂還給學(xué)生,也充分體現(xiàn)了教師的主導(dǎo)作用和學(xué)生的主體地位。使學(xué)生在交流中培養(yǎng)了合作學(xué)習(xí)的意識,對因數(shù)和倍數(shù)的概念有了初步的認(rèn)識,對它們之間的聯(lián)系也有了更好的理解。
一個數(shù)的因數(shù)和倍數(shù)是本節(jié)課中技能目標(biāo)中很重要的一部分。使學(xué)生在已有的經(jīng)驗基礎(chǔ)上,獨立的列舉一個數(shù)的因數(shù),在小組合作交流中得出。找一個數(shù)的因數(shù)和倍數(shù)的方法。真正地把主動權(quán)交給學(xué)生,教師通過引導(dǎo),使學(xué)生加深理解,化解難點。
4、引導(dǎo)學(xué)生分析,比較歸納尋找共性,找出不同,得出一個數(shù)的因數(shù),使學(xué)生學(xué)會有序思考,從而形成基本技能與方法,做到即關(guān)注了過程,又關(guān)注了結(jié)果。教師的教學(xué)水到渠成,學(xué)生的學(xué)習(xí)則是山重水復(fù)疑無路,柳暗花明又一村。
5、引導(dǎo)學(xué)生置疑,集體交流,化解疑問。
便于學(xué)生對本課所學(xué)知識更好的消化理解。
三、練習(xí)。
練習(xí)題設(shè)計形式多樣,有梯度。既注重基礎(chǔ),又有所提高,從而真正實現(xiàn)了課堂教學(xué)的有效性。
小學(xué)因數(shù)和倍數(shù)的教案(專業(yè)14篇)篇二
教學(xué)內(nèi)容:
教材分析:
本節(jié)教學(xué)是在學(xué)生學(xué)習(xí)掌握了因數(shù)和倍數(shù)兩個概念的基礎(chǔ)上,在教師的引導(dǎo)下,讓學(xué)生運用乘法算式及除法中的整除自主嘗試、探究“求一個數(shù)的因數(shù)”的方法。同時,通過多種形式的訓(xùn)練,使學(xué)生能熟練找全一個數(shù)的因數(shù)。另外,通過引導(dǎo)學(xué)生用集合的形式表示一個數(shù)的因數(shù),一方面給學(xué)生滲透集合思想,更重要的是為后面教學(xué)求兩個數(shù)的公因數(shù)做準(zhǔn)備。
教學(xué)目標(biāo):
2、逐步培養(yǎng)學(xué)生從個別到全體、從具體到一般的抽象歸納的思想方法。
教學(xué)重點:
探究求一個數(shù)的因數(shù)的方法及規(guī)律特點。
教學(xué)難點:
用求一個數(shù)的因數(shù)的方法熟練找全一個數(shù)的因數(shù)。
教具準(zhǔn)備:
投影儀、小黑板、卡片。
教學(xué)課時:一課時。
教學(xué)設(shè)想:
運用嘗試教學(xué)法,從學(xué)生已有的知識經(jīng)驗出發(fā),通過教師引導(dǎo)、學(xué)生自學(xué)例1,自主嘗試、探究求一個數(shù)的因數(shù)的方法方法,并能運用所獲得的方法、經(jīng)驗找全一個數(shù)的因數(shù)。
教學(xué)過程:
一、復(fù)習(xí)舊知。
師:同學(xué)們,前面學(xué)習(xí)了因數(shù)和倍數(shù)的概念,老師很想考考你們學(xué)得怎么樣,可以嗎?
生:(預(yù)設(shè))可以!
師:出示小黑板。
1、利用因數(shù)和倍數(shù)的相互依存關(guān)系說一說下面各組數(shù)的相互關(guān)系。
21和72×7=1430÷6=5。
2、判斷。
(1)12是倍數(shù),2是因數(shù)。()。
(2)1是14的因數(shù),14是1的倍數(shù)。()。
(3)因為6×0.5=3,所以,6和0.5是3的因數(shù),3是6和0.5的倍數(shù)。()。
教師根據(jù)學(xué)生完成練習(xí)的情況對學(xué)生進行恰當(dāng)?shù)谋頁P激勵,同時進入新課教學(xué):……。
二、新課教學(xué)。
過程一:嘗試訓(xùn)練。
(一)出示問題。
師:同學(xué)們,老師有一個新問題,想請大家?guī)椭鉀Q,行嗎?
生:行!(預(yù)設(shè))。
嘗試題:14的因數(shù)有哪幾個?
(二)學(xué)生解決問題,教師巡視并根據(jù)實際適時輔導(dǎo)學(xué)困生。
(三)信息反饋。
板書:
1×14。
14 2×7。
14÷2。
14的因數(shù)有:1,2,7,14。
過程二:自學(xué)課本(p13例1)。
(一)學(xué)生自學(xué)例1。
教師提出自學(xué)要求(投影):
1、18有哪些因數(shù)?
2、文中的小朋友是怎樣找出18的因數(shù)的?他們找完了嗎?如果沒有,請幫助他們完成。
3、你還有別的找法嗎?請試一試,并用自己喜歡的方式寫出18所有的因數(shù)。
(二)信息反饋。
1、反饋自學(xué)要求情況;
板書:
1×18。
182×9。
3×6。
18的因數(shù)有1,2,3,6,9,18。
還可以這樣表示:18的因數(shù)。
2、知識對比,探索發(fā)現(xiàn)規(guī)律。
(1)師:同學(xué)們,根據(jù)求14和18的因數(shù)時獲得的體驗,再思考下面問題:
投影出示問題:
思考一:你用什么方法找出?
(2)學(xué)生思考,教師適時引導(dǎo)。
(3)同桌交流思考結(jié)果。
(4)師生互動。總結(jié)方法、點出課題。
求一個數(shù)的因數(shù)的方法:用乘法計算或除法計算(整除)。
過程三:嘗試練習(xí)。
(一)用小黑板出示練習(xí)題。
1、找出30的因數(shù)有哪些?36的因數(shù)有哪些?
(二)信息反饋:師生互動總結(jié)特點。
板書:
一個數(shù)的因數(shù)的個數(shù)是有限的。它的最小因數(shù)是1,的因數(shù)是它本身。
三、課堂作業(yè)。
練習(xí)二第2題和第4題前半部分。
四、課堂延伸。
猜一猜:(卡片)只有一個因數(shù)的數(shù)是誰?
五、課堂小結(jié)。
師:今天你學(xué)會了求一個數(shù)的因數(shù)的方法嗎?你知道一個數(shù)的因數(shù)特點嗎?
生:……。
板書設(shè)計:
求一個數(shù)的因數(shù)的方法。
1×14。
142×7 方法:用乘法計算或除法計算(整除)。
14÷2。
14的因數(shù)有:1,2,7,14。
1×18。
182×9。
3×6。
18的因數(shù)有:1,2,3,6,9,18特點:一個數(shù)的因數(shù)的個數(shù)是有限的。
還可以表示為:
它的最小因數(shù)是1,的因數(shù)是它本身。
小學(xué)因數(shù)和倍數(shù)的教案(專業(yè)14篇)篇三
教學(xué)目標(biāo):
1、通過操作活動得出相應(yīng)的乘除法算式,幫助學(xué)生理解倍數(shù)和因數(shù)的意義;探索求個數(shù)的倍數(shù)和因數(shù)的方法,發(fā)現(xiàn)一個數(shù)倍數(shù)和因數(shù)的某些特征。
2、在探索一個數(shù)的倍數(shù)和因數(shù)的過程中培養(yǎng)學(xué)生觀察、分析、概括能力,培養(yǎng)有序思考能力。
3、通過倍數(shù)和因數(shù)之間的互相依存關(guān)系使學(xué)生感受數(shù)學(xué)知識的內(nèi)在聯(lián)系,體會到數(shù)學(xué)內(nèi)容的奇妙、有趣。
教學(xué)重點:理解倍數(shù)和因數(shù)的意義。
教學(xué)難點:探索求一個數(shù)的倍數(shù)和因數(shù)的方法。
教學(xué)準(zhǔn)備:每桌準(zhǔn)各12個一樣大小的正方形,每人準(zhǔn)備一張自己學(xué)號的卡片。
設(shè)計理念:通過竟猜、操作、比一比誰寫得多,找朋友等形式多樣的活動激發(fā)學(xué)生持續(xù)的學(xué)習(xí)興趣;學(xué)生通過獨立思考、合作文流進行自主探索;教師引導(dǎo)學(xué)生掌握數(shù)學(xué)思考的方法。
教學(xué)過程:
1、讓學(xué)生進行智力競猜春暖花香的季節(jié),公園里許多人在劃船,一條船上有兩個父親兩個兒子,但總共只有3個人,這是怎么回事呢?(部分學(xué)生能猜出三個人分別是孫子、爸爸、和爺爺)
2、孫子、爸爸、爺爺?shù)拿址謩e是韓韓,韓有才、韓廣發(fā)。請學(xué)生以韓有才為中心介紹下三個人的關(guān)系。學(xué)生可能會說出韓有才.是爸爸,韓有才是兒子的語句,這時引導(dǎo)學(xué)生說出誰是誰的爸爸誰是準(zhǔn)的兒子。
3、上述父子關(guān)系是一種互相依存的關(guān)系,在表述時一定要完整。并向?qū)W生說明自然數(shù)中某兩個數(shù)之間也有這種類似的依存關(guān)系倍數(shù)和因數(shù)。
設(shè)計說明:智力競猜走學(xué)生喜歡的形式,因為每個學(xué)生都有爭強好勝之心,競猜有兩個作用,一是激發(fā)學(xué)生的學(xué)習(xí)興趣,二是以此引出相互依存的關(guān)系,為理解倍數(shù)和因數(shù)的相互依存關(guān)系作鋪墊。
1、師:智慧從手指問流出,通過操作我們能發(fā)現(xiàn)許多的知識。請同桌同學(xué)拿出課前準(zhǔn)備的12個同樣大小的正方形,試一試能擺出幾個不同的長方形,并思考一下其中蘊涵著哪些不同的乘除法算式。
2、請學(xué)生匯報不同的擺法,以及相應(yīng)的乘除法算式。(乘法算式和除法算式分開寫)再向?qū)W生說明:如果一個圖形經(jīng)過旋轉(zhuǎn)后和另一個圖形一樣,我們就認(rèn)為這兩個圖形是一樣的,讓學(xué)生特重復(fù)的圖形和算式去掉。(板書三十乘法算式,和幾十相應(yīng)的除法算式)
設(shè)計說明;讓學(xué)生寫出蘊涵的乘除法算式符合學(xué)生的知識基礎(chǔ),學(xué)生有的可能用乘法表示,也有的可能用除法表示;讓學(xué)生將旋轉(zhuǎn)后相同的去掉,這是一次簡化,很多學(xué)生并不知道,需要指導(dǎo),這樣可以使學(xué)生認(rèn)識到事物的本質(zhì)。
3、讓學(xué)生一起看乘法算式43=12,向?qū)W生指出:12是4的倍數(shù),12也是3的倍數(shù),4是12的因數(shù),3也是12的因數(shù)。
4、先請一個學(xué)生站起來說一說.然后同桌的同學(xué)再互相說一說。
5、讓學(xué)生仿照說出62=12和121=12中哪個數(shù)是哪個數(shù)的倍數(shù),哪個數(shù)是哪個數(shù)的因數(shù)。
6、學(xué)生相互出一道乘法算式,并說一說誰是誰的倍數(shù),誰是誰的因數(shù)。學(xué)生可能會出現(xiàn)0( )=0的情況,借此向?qū)W生說明我們研究因敷和倍數(shù)一般指不是0的自然數(shù)。
設(shè)計說明:倍數(shù)和因數(shù)是全新的概念,需要教師的傳授、講解,需要學(xué)生的適當(dāng)記憶重復(fù)、仿照。當(dāng)然,要使學(xué)生真正理解還必須舉一反三,通過互相舉例可以逐步完善學(xué)生對倍數(shù)和因數(shù)的認(rèn)識,同時使學(xué)生明確倍數(shù)和因數(shù)的研究范圍。
7、以43=12與123=4為例,向?qū)W生說明后面的除法算式是由前面的乘法算式得到的,根據(jù)這個除法算式可以說誰是誰的倍數(shù),誰是誰的因數(shù),說好后再讓學(xué)生試一試其他幾個除法算式中的關(guān)系。
8、練習(xí):根據(jù)下面的算式,說說哪個數(shù)是哪個數(shù)的因數(shù),哪個數(shù)是哪個數(shù)的倍數(shù)
54=20 357=5 3+4=7
(1)學(xué)生回答后引發(fā)學(xué)生思考:能不能說20是倍數(shù),4是因數(shù)。使學(xué)生進一步理解倍數(shù)是兩個數(shù)之間的一種相互依存的關(guān)系,必須說哪個是哪個的倍數(shù),因數(shù)也同樣如此。
(2)通過3+4=7使學(xué)生進一步理解倍數(shù)和因數(shù)都是建立在乘法或除法的基礎(chǔ)之上的。
設(shè)計說明:乘法和除法是一種互逆的關(guān)系,在學(xué)習(xí)中應(yīng)該溝通它們之間的聯(lián)系;通過三道練習(xí)可以鞏固剛剛獲得的對倍數(shù)和因數(shù)的認(rèn)識,將融會貫通落到實處。
1、找一個數(shù)的因數(shù)。
(1)聯(lián)系板書的乘除法算式觀察思考12的因數(shù)有哪些,井想辦法找出15的所有因數(shù)。
(2)學(xué)生獨立思考,明白根據(jù)一個乘法(除法)算式可以找出15的兩個因數(shù),在學(xué)生充分交流的基礎(chǔ)上引導(dǎo)學(xué)生有條理的一對一對說出15的因數(shù)。
(3)用一對一對的方法找出36的所有因數(shù)。可能有的學(xué)生根據(jù)乘法算式找的,也有的學(xué)生是根據(jù)除法算式找的,都應(yīng)該給予肯定。
(4)引導(dǎo)學(xué)生觀察12、15、36的因數(shù),說一說有什么發(fā)現(xiàn)。一個數(shù)的因數(shù)個數(shù)是有限的,其中最小的因數(shù)都是1,最大的都是它本身。
設(shè)計說明:先安排學(xué)生找一個數(shù)的因數(shù)可以使學(xué)生利用操作得到的算式進行,觀察,這樣比較自然,而且為于找一個數(shù)的因數(shù)指明了方向。學(xué)生交流時突出了方法的多樣性,既可以根據(jù)乘法算式想,也可以根據(jù)除法算式想,交流后引導(dǎo)學(xué)生一對一對的找是必要的,它可以培養(yǎng)學(xué)生的有序思考。最后引導(dǎo)學(xué)生觀察。使學(xué)生自主發(fā)現(xiàn)、歸納出一個數(shù)的因數(shù)的某些特征。
2、找一個數(shù)的倍數(shù)。
(1)讓學(xué)生找3的倍數(shù),比一比誰找得多。
(2)學(xué)生匯報后,引導(dǎo)學(xué)生有序思考,并得出3的倍數(shù)可以用3乘連續(xù)的自然數(shù)1、2、3,3的倍數(shù)的個數(shù)是無限的,所以寫3的`倍數(shù)時要借助省略號表示結(jié)果。
(3)找出2的倍數(shù)和5的倍數(shù),并引導(dǎo)學(xué)生觀察3、2、5的倍數(shù)情況,說一說有什么發(fā)現(xiàn)。一個數(shù)的倍數(shù)個數(shù)是無限的,其中最小的倍數(shù)是它本身,沒有最大的倍數(shù)。
設(shè)計說明:讓學(xué)生比一比誰找的倍數(shù)多,可以使學(xué)生產(chǎn)生認(rèn)知沖突,認(rèn)識到一個數(shù)的倍數(shù)個數(shù)是無限的,在學(xué)生匯報后同樣需要引導(dǎo)學(xué)生的有序思考,需要引導(dǎo)學(xué)生自主發(fā)現(xiàn)、歸納一個數(shù)倍數(shù)的特征。
1、想想做做的第l題。學(xué)生表述后強調(diào)哪個是哪個的倍數(shù)(或因數(shù))。
設(shè)計說明:第l題是基礎(chǔ)練習(xí).可以鞏固對倍數(shù)和因數(shù)的認(rèn)識,2、3兩題聯(lián)系實際,使學(xué)生感悟到其中蘊藏著求一個數(shù)倍數(shù)和因數(shù)的方法,以及倍數(shù)和因數(shù)的某些特征。第4題通過游戲活動進一步激發(fā)學(xué)生持續(xù)的學(xué)習(xí)熱情,而且可以綜合應(yīng)用求倍數(shù)和因數(shù)的方法,再次認(rèn)識到倍數(shù)和因數(shù)的某些特征。
1、通過這節(jié)課的學(xué)習(xí)你有什么收獲?向你的同伴介紹一下。
2、生活中許多現(xiàn)象與我們學(xué)習(xí)的倍數(shù)和因數(shù)的知識有關(guān),課后同學(xué)們可以利用今天所學(xué)的知識探索一下1小時等于60分的好處。通過探索使學(xué)生明白由于60的因數(shù)是兩位數(shù)中最多的,可以方便計算。
設(shè)計說明:向同伴介紹自己的收獲可以將課堂中學(xué)到的知識進行自我梳理,同時通過探索1小時等于60分的好處,可以鞏固倍數(shù)和因數(shù)的相關(guān)知識,溝通知識間的聯(lián)系,拓展學(xué)生的知識面,使學(xué)生認(rèn)識到數(shù)學(xué)知識的應(yīng)用價值。
小學(xué)因數(shù)和倍數(shù)的教案(專業(yè)14篇)篇四
1.我能理解什么是質(zhì)數(shù)和合數(shù),掌握了判斷質(zhì)數(shù)、合數(shù)的方法。
2.我知道100以內(nèi)的質(zhì)數(shù),記住了20以內(nèi)的質(zhì)數(shù)。
3.我能在自主探究中獨立思考,合作探究時暢所欲言。
能理解質(zhì)數(shù)、合數(shù)的意義,正確判斷一個數(shù)是質(zhì)數(shù)還是合數(shù)。
用恰當(dāng)?shù)姆椒ㄕ页?00以內(nèi)的質(zhì)數(shù);會給自然數(shù)分類。
一、導(dǎo)入新課。
二、檢查獨學(xué)。
1.互動分享收獲。
2.質(zhì)疑探討。
3.試試身手:第23頁做一做。
三、合作探究。
1.小組合作,利用課本24頁的表格,用恰當(dāng)?shù)姆椒ㄕ页?00以內(nèi)的質(zhì)數(shù),做一個質(zhì)數(shù)表。
2.展示、交流:你們是怎樣找出100以內(nèi)質(zhì)數(shù)的?
3.小組討論:
(1)有沒有最大的質(zhì)數(shù)或合數(shù)?
(2)根據(jù)因數(shù)的個數(shù),可把非零自然數(shù)分成哪幾類?
4.我能很快熟記20以內(nèi)的質(zhì)數(shù)。
5.獨立思考:
(1)是不是所有的`質(zhì)數(shù)都是奇數(shù)?
(2)是不是所有的奇數(shù)都是質(zhì)數(shù)?
(3)是不是所有的合數(shù)都是偶數(shù)?
(4)是不是所有的偶數(shù)都是合數(shù)?
6.組內(nèi)交流。
小學(xué)因數(shù)和倍數(shù)的教案(專業(yè)14篇)篇五
第6課時。
1、嘗試用“列表”“畫示意圖”等解決問題的策略發(fā)現(xiàn)規(guī)律,運用數(shù)的奇偶性解決生活中的一些簡單問題。
2、經(jīng)歷探索加法中數(shù)的奇偶性變化的過程,在活動中發(fā)現(xiàn)加法中數(shù)的奇偶性變化規(guī)律,在活動中體驗研究的方法,提高推理能力。
1、嘗試用“列表”“畫示意圖”等解決問題的策略發(fā)現(xiàn)規(guī)律,運用數(shù)的奇偶性解決生活中的一些簡單問題。
2、經(jīng)歷探索加法中數(shù)的奇偶性變化的過程,在活動中發(fā)現(xiàn)加法中數(shù)的奇偶性變化規(guī)律,在活動中體驗研究的方法,提高推理能力。
活動1:利用數(shù)的奇偶性解決一些簡單的實際問題。
讓學(xué)生嘗試解決問題,尋找解決問題的策略,利用解決問題的策略發(fā)現(xiàn)規(guī)律,教師適當(dāng)進行“列表”“畫示意圖”等解決問題策略的指導(dǎo)。
本題是讓學(xué)生應(yīng)用上述活動中解決問題的策略嘗試自己解決問題,最后的結(jié)果是:翻動10次,杯口朝上;翻動19次,杯口朝下。解決問題后,讓學(xué)生以“硬幣”為題材,自己提出問題、解決問題,還可以開展游戲活動。
活動2:探索奇數(shù)、偶數(shù)相加的規(guī)律。
[板書設(shè)計]。
數(shù)的奇偶性。
12+34=48偶數(shù)+偶數(shù)=偶數(shù)。
11+37=48奇數(shù)+奇數(shù)=偶數(shù)。
12+11=23奇數(shù)+偶數(shù)=奇數(shù)。
小學(xué)因數(shù)和倍數(shù)的教案(專業(yè)14篇)篇六
1、嘗試用“列表”“畫示意圖”等解決問題的策略發(fā)現(xiàn)規(guī)律,運用數(shù)的奇偶性解決生活中的一些簡單問題。
2、經(jīng)歷探索加法中數(shù)的奇偶性變化的過程,在活動中發(fā)現(xiàn)加法中數(shù)的奇偶性變化規(guī)律,在活動中體驗研究的方法,提高推理能力。
1、嘗試用“列表”“畫示意圖”等解決問題的策略發(fā)現(xiàn)規(guī)律,運用數(shù)的奇偶性解決生活中的一些簡單問題。
2、經(jīng)歷探索加法中數(shù)的奇偶性變化的過程,在活動中發(fā)現(xiàn)加法中數(shù)的奇偶性變化規(guī)律,在活動中體驗研究的方法,提高推理能力。
活動1:利用數(shù)的奇偶性解決一些簡單的實際問題。
讓學(xué)生嘗試解決問題,尋找解決問題的策略,利用解決問題的策略發(fā)現(xiàn)規(guī)律,教師適當(dāng)進行“列表”“畫示意圖”等解決問題策略的指導(dǎo)。
試一試:
本題是讓學(xué)生應(yīng)用上述活動中解決問題的策略嘗試自己解決問題,最后的結(jié)果是:翻動10次,杯口朝上;翻動19次,杯口朝下。解決問題后,讓學(xué)生以“硬幣”為題材,自己提出問題、解決問題,還可以開展游戲活動。
活動2:探索奇數(shù)、偶數(shù)相加的規(guī)律。
[板書設(shè)計]。
例子:結(jié)論:
12+34=48偶數(shù)+偶數(shù)=偶數(shù)。
11+37=48奇數(shù)+奇數(shù)=偶數(shù)。
12+11=23奇數(shù)+偶數(shù)=奇數(shù)。
小學(xué)因數(shù)和倍數(shù)的教案(專業(yè)14篇)篇七
1.學(xué)生通過回憶和整理,進一步明確因數(shù)和倍數(shù)的相關(guān)知識,加深認(rèn)識相關(guān)概念之間的聯(lián)系與區(qū)別,能求兩個數(shù)的公因數(shù)和公倍數(shù),并能運用這些知識解決相關(guān)實際問題。
2.學(xué)生在應(yīng)用相關(guān)知識進行判斷和推理的過程中,能說明思考過程,進一步培養(yǎng)歸納概括和演繹推理等思維能力,進一步增強分析問題和解決問題的能力。
3.學(xué)生進一步體會數(shù)學(xué)知識之間的內(nèi)在聯(lián)系,感受數(shù)學(xué)思考的嚴(yán)謹(jǐn)性和數(shù)學(xué)結(jié)論的確定性,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù)學(xué)的自信心。
掌握倍數(shù)和因數(shù)等相關(guān)概念,以及應(yīng)用概念判斷、推理。
理解相關(guān)概念的聯(lián)系和區(qū)別。
一、揭示課題。
1.回顧知識。
提問:上節(jié)課,我們已經(jīng)復(fù)習(xí)了整數(shù)和小數(shù)的有關(guān)知識。
結(jié)合學(xué)生交流,板書。
2.揭示課題。
引入:這節(jié)課,我們復(fù)習(xí)因數(shù)和倍數(shù)的相關(guān)知識。
通過復(fù)習(xí),能進一步了解關(guān)于因數(shù)和倍數(shù)的知識,理解它們之間的聯(lián)系和區(qū)別,并能應(yīng)用這些知識。
二、基本練習(xí)。
1.知識梳理。
提高:回想一下,在學(xué)習(xí)因數(shù)和倍數(shù)時,我們還學(xué)習(xí)了哪些相關(guān)的知識?
學(xué)生回顧,交流,教師適當(dāng)引導(dǎo)回顧。
根據(jù)學(xué)生回答,板書整理。
2.做練習(xí)與實踐第10題。
學(xué)生獨立完成,指名板演。
集體交流,讓學(xué)生說說找一個數(shù)的因數(shù)和倍數(shù)的方法。
3.做練習(xí)與實踐第11題。
出示題目,學(xué)生直接口答。
提問:怎樣判斷一個數(shù)是不是2的倍數(shù)?判斷是3和5的倍數(shù)呢?
追問:這里哪些是偶數(shù),哪些是奇數(shù)?說說你是怎樣想的。
4.做練習(xí)與實踐第12題。
學(xué)生先獨立寫出質(zhì)數(shù)和合數(shù),再指名口答。
追問:最小質(zhì)數(shù)是幾?最小的合數(shù)呢?
小學(xué)因數(shù)和倍數(shù)的教案(專業(yè)14篇)篇八
掌握因數(shù)、倍數(shù)的概念,知道因數(shù)、倍數(shù)的相互依存關(guān)系。
2、過程與方法。
通過自主探究,使學(xué)生學(xué)會用因數(shù)、倍數(shù)描述兩個數(shù)之間的關(guān)系。
3、情感態(tài)度與價值觀。
使學(xué)生感悟到數(shù)學(xué)知識的內(nèi)在聯(lián)系的邏輯之美。
教學(xué)重點。
掌握找一個數(shù)的因數(shù)、倍數(shù)的方法。
教學(xué)難點。
能熟練地找一個數(shù)的因數(shù)和倍數(shù)。
課件、投影。
一、遷移引入。
同學(xué)們,在我們的日常生活中,人與人之間存在著許多相互依存的關(guān)系,如:佳爸是佳佳的爸爸,佳佳是佳爸的兒子。其實在我們的數(shù)學(xué)王國里,數(shù)與數(shù)回見也存在著這種相互依存的關(guān)系,請看大平米,認(rèn)識這些嗎?(課件出示:0,1,2,3,4,5……)。
這些自然數(shù)。(課件去“0”)。
去0后這又是什么數(shù)?(非零自然數(shù)中。)這節(jié)課我們就在非零自然數(shù)中來研究數(shù)與數(shù)之間的這種相互依存的關(guān)系。
二、情境創(chuàng)設(shè),探究新知。
1、理解整除的意義。
(1)出示例1,在前面學(xué)習(xí)中,我們見過下面的算式。
12÷2=68÷3=2……230÷6=519÷7=2……59÷5=1.8。
26÷8=3.2520÷10=221÷21=163÷9=7。
你能把這些算式分類嗎?
(2)分類所得:
第
一
類
12÷2=620÷10=2。
30÷6=521÷21=1。
63÷9=7。
第
二
類
8÷3=2……29÷5=1.8。
19÷7=2……526÷8=3.25。
(3)觀察發(fā)現(xiàn),合作交流。
觀察算式,說一說誰是誰的倍數(shù),誰是誰的約數(shù)。
12÷2=6中,我們就說12是2的倍數(shù),2是12的因數(shù)。12÷6=2,所以12是6的倍數(shù),6是12的因數(shù)。由此可知:(在整數(shù)除法中,如果商是整數(shù)而沒有余數(shù),我們就說被除數(shù)是除數(shù)的倍數(shù),除數(shù)是被除數(shù)的因數(shù)。)。
3、總結(jié)歸納。
(1)在整數(shù)除法中,如果商是整數(shù)而沒有余數(shù),我們就說被除數(shù)是除數(shù)的倍數(shù),除數(shù)是被除數(shù)的因數(shù)。
4、注意:
為了方便,在研究因數(shù)和倍數(shù)的時候,我們所說的數(shù)指的是自然數(shù)(一般不包括0)。
5、做一做。
下面的4組數(shù)中,誰是誰的因數(shù)?誰是誰的倍數(shù)?
4和2436÷1375÷2581÷9。
6、教學(xué)例2。
18的因數(shù)有哪幾個?
18的因數(shù)有1、2、3、6、9、18。
也可以這樣用圖表示。
18的因數(shù)。
1,2,3,
6,9,18。
30的因數(shù)有哪些?36呢?
7、教學(xué)例3。
2的倍數(shù)有哪些?
2的倍數(shù)有2、4、6、8……。
2的倍數(shù)。
2,4,6,
8,10,12,
14,……。
3的倍數(shù)有哪些?5呢?
8、小組討論,歸納總結(jié)。
一個數(shù)的最小因數(shù)是1,最大的因數(shù)是它本身。一個數(shù)的最小倍數(shù)是它本身,沒有最大倍數(shù)。
一個數(shù)的因數(shù)的個數(shù)是有限的,一個數(shù)的倍數(shù)的個數(shù)是無限的。
一個數(shù)的最小因數(shù)是有限的,其中最小的因數(shù)是1,最大的因數(shù)是它本身。一個數(shù)的最小倍數(shù)是它本身,沒有最大倍數(shù)。
一個數(shù)的因數(shù)的個數(shù)是有限的,最大的因數(shù)是它本身。一個數(shù)的倍數(shù)的個數(shù)是無限的。
1、填空。
(1)36是4的()數(shù)。
(2)5是25的()。
(3)2.5是0.5的()倍。
2、下面各組數(shù)中,有因數(shù)和倍數(shù)關(guān)系的有哪些?
(1)18和3(2)120和60(3)45和15(4)33和7。
3、24和35的因數(shù)都有哪些?
一個數(shù)的最小因數(shù)是有限的,其中最小的因數(shù)是1,最大的因數(shù)是它本身。一個數(shù)的最小倍數(shù)是它本身,沒有最大倍數(shù)。
一個數(shù)的因數(shù)的個數(shù)是有限的,最大的因數(shù)是它本身。一個數(shù)的倍數(shù)的個數(shù)是無限的。
小學(xué)因數(shù)和倍數(shù)的教案(專業(yè)14篇)篇九
(1)能直接在方格圖上,數(shù)出相關(guān)圖形的面積。
(2)能利用分割的方法,將較復(fù)雜的圖形轉(zhuǎn)化為簡單的圖形,并用較簡單的方法計算面積。
2、過程與方法
(1)在解決問題的過程中,體會策略、方法的多樣性。
(2)學(xué)會與人交流思維過程與結(jié)果。
3、情感態(tài)度與價值觀
積極參與數(shù)學(xué)學(xué)習(xí)活動,體驗數(shù)學(xué)活動充滿著探索、體驗數(shù)學(xué)與日常生活密切相關(guān)。
1、重點是指導(dǎo)學(xué)生如何將圖形進行分割,從而讓學(xué)生體會到解決問題的多樣性和簡便性。難點是靈活運用方法。
2、借助圖形,讓學(xué)生動手,自主探索、合作交流解決問題的方法。
一、創(chuàng)設(shè)情境、揭示新課。
我要說班里每位同學(xué)都是優(yōu)秀的設(shè)計師!因為大家都在設(shè)計著自己美好的將來,所以在很用功的學(xué)習(xí)。希望大家繼續(xù)努力,使自己美好的設(shè)計成為現(xiàn)實。下面我們來看一看,我們的同行——一位地毯圖案設(shè)計師,設(shè)計的圖案。
展示地毯上的圖形,讓學(xué)生仔細觀察圖形特點,說發(fā)現(xiàn)。
地毯是正方形,邊長為14米藍色部分圖形是對稱的,……
師:看這副地毯圖,請你提出數(shù)學(xué)問題。
根據(jù)學(xué)生的回答展示問題:“地毯上藍色部分的面積是多少?”
師板書課題:地毯上的圖形面積
二、自主探索、學(xué)習(xí)新知
如果每個小方格的面積表示1平方米,,那么地毯上的圖形面積是多少呢?
1、學(xué)生獨立解決問題
要求學(xué)生獨立思考,解決問題,怎樣簡便就怎樣想,并把解決問題的方法記錄下來。
2、小組內(nèi)交流、討論
3、班內(nèi)反饋
請學(xué)生匯報藍色部分面積,重點匯報求藍色面積的方法。對于每一種方法,只要學(xué)生說得合理都給以肯定。
學(xué)生的答案也許有:
(1)直接一個一個地數(shù),為了不重復(fù),在圖上編號;(數(shù)方格法)
(2)因為這個圖形是對稱的,所以平均分成4份,先數(shù)出一份中藍色的面積,再乘4;(化整為零法)
(3)用總正方形面積減去白色部分的面積;(大減小法)
(4)將中間8個藍色小正方形轉(zhuǎn)移到四周蘭色重疊的地方,就變成4個3×6的長方形加上4個3×3的正方形。(轉(zhuǎn)移填補法)
4、學(xué)生總結(jié)求藍色部分面積的方法。
三、鞏固練習(xí)、拓展運用(課本第19頁練一練)
1、第1題
(1)學(xué)生獨立思考,求圖1的面積。
(2)說一說計算圖形面積的方法。引導(dǎo)學(xué)生了解“不滿一格的當(dāng)作半格數(shù)”。
2、第2題
獨立解決后班內(nèi)反饋。
3、第3題
(1)學(xué)生獨立填空。求出每組圖形的面積。學(xué)生完成后班內(nèi)交流反饋答案。
(2)學(xué)生觀察結(jié)果,說發(fā)現(xiàn)。
第(1)題的4個圖形面積分別為1、2、3、4的平方數(shù);第(2)題與第(1)題進行比較,第(2)題的3個圖形的面積分別是前面一組題的前3個圖形 面積的一半。
四、全課小結(jié),課后拓展
今天我們進行了那些活動,你收獲了什么?
師:對于計算方格圖中規(guī)則圖形的面積,我們可以分割,可以直接數(shù),可以“大減小”,還可以轉(zhuǎn)移填補。如果沒有方格圖,我們該怎樣解決一些圖形的面積呢?明天的數(shù)學(xué)課上我們將繼續(xù)學(xué)習(xí)。課后,有興趣的同學(xué)可以在空白方格紙上設(shè)計一些你喜歡的圖案,讓你的同桌幫你算一算圖案的面積。
小學(xué)因數(shù)和倍數(shù)的教案(專業(yè)14篇)篇十
一、引入新課。
1、出示主題圖,讓學(xué)生各列一道乘法算式。
2、師:看你能不能讀懂下面的算式?
出示:因為2×6=12。
所以2是12的因數(shù),6也是12的因數(shù);
12是2的倍數(shù),12也是6的倍數(shù)。
3、師:你能不能用同樣的方法說說另一道算式?
(指名生說一說)。
師:你有沒有明白因數(shù)和倍數(shù)的關(guān)系了?
那你還能找出12的其他因數(shù)嗎?
4、你能不能寫一個算式來考考同桌?學(xué)生寫算式。
師:誰來出一個算式考考全班同學(xué)?
5、師:今天我們就來學(xué)習(xí)因數(shù)和倍數(shù)。(出示課題:因數(shù)倍數(shù))。
齊讀p12的注意。
二、新授:
(一)找因數(shù):
1、出示例1:18的因數(shù)有哪幾個?
學(xué)生嘗試完成:匯報。
(18的因數(shù)有:1,2,3,6,9,18)。
師:說說看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一對一對找,如1×18=18,2×9=18…)。
師:18的因數(shù)中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。
2、用這樣的方法,請你再找一找36的因數(shù)有那些?
匯報36的因數(shù)有:1,2,3,4,6,9,12,18,36。
師:你是怎么找的?
舉錯例(1,2,3,4,6,6,9,12,18,36)。
師:這樣寫可以嗎?為什么?(不可以,因為重復(fù)的因數(shù)只要寫一個就可以了,所以不需要寫兩個6)。
仔細看看,36的因數(shù)中,最小的是幾,最大的是幾?
看來,任何一個數(shù)的因數(shù),最小的一定是(),而最大的一定是()。
3、你還想找哪個數(shù)的因數(shù)?(18、5、42……)請你選擇其中的一個在自練本上寫一寫,然后匯報。
4、其實寫一個數(shù)的因數(shù)除了這樣寫以外,還可以用集合表示:如。
18的因數(shù)。
小結(jié):我們找了這么多數(shù)的因數(shù),你覺得怎樣找才不容易漏掉?
從最小的自然數(shù)1找起,也就是從最小的因數(shù)找起,一直找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。
(二)找倍數(shù):
1、我們一起找到了18的因數(shù),那2的倍數(shù)你能找出來嗎?
匯報:2、4、6、8、10、16、……。
師:為什么找不完?
你是怎么找到這些倍數(shù)的?(生:只要用2去乘1、乘2、乘3、乘4、…)。
那么2的倍數(shù)最小是幾?最大的你能找到嗎?
2、讓學(xué)生完成做一做1、2小題:找3和5的倍數(shù)。
匯報3的倍數(shù)有:3,6,9,12。
師:這樣寫可以嗎?為什么?應(yīng)該怎么改呢?
改寫成:3的倍數(shù)有:3,6,9,12,……。
你是怎么找的?(用3分別乘以1,2,3,……倍)。
5的倍數(shù)有:5,10,15,20,……。
師:表示一個數(shù)的倍數(shù)情況,除了用這種文字?jǐn)⑹龅姆椒ㄍ猓€可以用集合來表示。
2的倍數(shù)3的倍數(shù)5的倍數(shù)。
師:我們知道一個數(shù)的因數(shù)的個數(shù)是有限的,那么一個數(shù)的倍數(shù)個數(shù)是怎么樣的呢?
(一個數(shù)的倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù))。
三、課堂小結(jié):
我們一起來回憶一下,這節(jié)課我們重點研究了一個什么問題?你有什么收獲呢?
四、獨立作業(yè):
完成練習(xí)二1~4題。
小學(xué)因數(shù)和倍數(shù)的教案(專業(yè)14篇)篇十一
一個數(shù)因數(shù)的求法和一個數(shù)倍數(shù)的求法(教材第6頁例2、例3,教材第7~8頁練習(xí)二第2~8題)。
1.通過學(xué)習(xí)使學(xué)生掌握找一個數(shù)的因數(shù),倍數(shù)的方法;
2.學(xué)生能了解一個數(shù)的因數(shù)是有限的,倍數(shù)是無限的;
3.能熟練地找一個數(shù)的因數(shù)和倍數(shù);
4.在解決問題的過程中,培養(yǎng)學(xué)生思維的有序性、條理性,增強學(xué)生的探究意識和求索精神。
掌握找一個數(shù)的因數(shù)和倍數(shù)的方法,能熟練地找一個數(shù)的因數(shù)和倍數(shù)。
說出下列各式中誰是誰的因數(shù)?誰是誰的倍數(shù)?20÷4=56×3=18
在上面的算式中,6和3都是18的因數(shù),你知道還有哪些數(shù)是18的因數(shù)嗎?18是3的倍數(shù),你知道還有哪些數(shù)是3的倍數(shù)嗎?這節(jié)課我們就來學(xué)習(xí)如何找一個數(shù)的因數(shù)和倍數(shù)。
(一)找因數(shù):
1.出示例1:18的因數(shù)有哪幾個?
一個數(shù)的因數(shù)還不止一個,我們一起找找18的因數(shù)有哪些?
學(xué)生嘗試完成后匯報
(18的因數(shù)有:1,2,3,6,9,18)教師:說說看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一對一對找,如1×18=18,2×9=18…)
教師:18的因數(shù)中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。
2.用這樣的方法,請你再找一找36的因數(shù)有哪些?
舉錯例(1,2,3,4,6,6,9,12,18,36)
教師:這樣寫可以嗎?為什么?(不可以,因為重復(fù)的因數(shù)只要寫一個就可以了,所以不需要寫兩個6)
仔細看看,36的因數(shù)中,最小的是幾,最大的是幾?
教師板書:一個數(shù)的最小因數(shù)是1,最大因數(shù)是它本身。
3.你還想找哪個數(shù)的因數(shù)?(18、42……)請你選擇其中的一個在自練本上寫一寫,然后匯報。
從最小的自然數(shù)1找起,也就是從最小的因數(shù)找起,一直找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。
(二)找倍數(shù):
教師:這樣寫可以嗎?為什么?應(yīng)該怎么改呢?
教師:表示一個數(shù)的倍數(shù)情況,除了用這種文字?jǐn)⑹龅姆椒ㄍ猓€可以用集合來表示2的倍數(shù),3的`倍數(shù),5的倍數(shù)。
教師:我們知道一個數(shù)的因數(shù)的個數(shù)是有限的,那么一個數(shù)的倍數(shù)個數(shù)是怎么樣的呢?
(一個數(shù)的倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù))
1.完成課本第7頁練習(xí)二第2~5題。
2.完成教材第8頁練習(xí)二第6~8題。
我們一起來回憶一下,這節(jié)課我們重點研究了一個什么問題?你有什么收獲呢?
一個數(shù)的因數(shù)的個數(shù)是有限的,最小的是1,最大的是它本身。一個數(shù)的倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù)。
本節(jié)課是在學(xué)生認(rèn)識因數(shù)和倍數(shù)的基礎(chǔ)上進行教學(xué)的,在找一個數(shù)的因數(shù)時,如何做到既不重復(fù)又不遺漏,對于剛剛對因數(shù)和倍數(shù)有感性認(rèn)識的學(xué)生來說有一定的困難,教學(xué)時充分發(fā)揮小組學(xué)習(xí)的優(yōu)勢,在小組交流的過程中,學(xué)生對自己的方法進行反思,吸取同伴的好方法,很好的體現(xiàn)了自主探索和合作交流的教學(xué)理念。
小學(xué)因數(shù)和倍數(shù)的教案(專業(yè)14篇)篇十二
教學(xué)內(nèi)容:
蘇教版義務(wù)教育教科書《數(shù)學(xué)五年級下冊第47~48頁整理與練習(xí)“回顧與整理”和“練習(xí)與應(yīng)用”第1~7題。
教學(xué)目標(biāo):
1.使學(xué)生加深認(rèn)識因數(shù)和倍數(shù),能找一個數(shù)的因數(shù)或倍數(shù),進一步認(rèn)識質(zhì)數(shù)和合數(shù);掌握2、5、3的倍數(shù)的特征,進一步認(rèn)識偶數(shù)和奇數(shù);加深理解質(zhì)因數(shù),能正確分解質(zhì)因數(shù)。
2.使學(xué)生能整理因數(shù)和倍數(shù)的知識內(nèi)容,感受知識之間的內(nèi)在聯(lián)系;能應(yīng)用相關(guān)概念進行分析、判斷、推理,進一步掌握思考、解決數(shù)學(xué)問題的方法,積累數(shù)學(xué)思維的初步經(jīng)驗,提高分析、推理、判斷等思維能力;加深對數(shù)的認(rèn)識,進一步發(fā)展數(shù)感。
3.使學(xué)生主動參與回顧、整理知識和分析、解決問題等活動,培養(yǎng)樂于思考的品質(zhì)和與同伴互相交流、傾聽等合作意識和能力;感受數(shù)學(xué)方面的知識積累和進步,提高學(xué)好數(shù)學(xué)的自信心。
教學(xué)重點:
教學(xué)難點:
應(yīng)用概念正確判斷、推理。
教學(xué)過程:
一、揭示課題。
談話:最近的數(shù)學(xué)課,我們學(xué)習(xí)了哪方面的內(nèi)容?回憶一下,都學(xué)到了哪些知識?
揭題:我們已經(jīng)學(xué)完了因數(shù)和倍數(shù)這一單元的內(nèi)容,今天開始主要整理與練習(xí)這一單元內(nèi)容。(板書課題)通過整理與練習(xí),我們要進一多認(rèn)識因數(shù)與倍數(shù),2.5.3的倍數(shù)的特征,能熟練掌握找一個數(shù)的因數(shù)或倍數(shù)的方法;能判斷偶數(shù)和奇數(shù)、質(zhì)數(shù)和合數(shù),了解這些概念之間的聯(lián)系與區(qū)別,能正確分解質(zhì)因數(shù),提高對數(shù)的特征的認(rèn)識,加深對數(shù)的認(rèn)識。
二、回顧與整理。
1.回顧討論。
出示討論題:
(1)你是怎樣理解因數(shù)和倍數(shù)的?舉例說明你的認(rèn)識。
(2)2、5、3的倍數(shù)有什么特征?我們是怎樣發(fā)現(xiàn)的?
(3)自然數(shù)可以怎樣分類,各能分成哪幾類?舉例說說什么是質(zhì)因數(shù)和分解質(zhì)因數(shù)。
(4)什么是兩個數(shù)的公因數(shù)和最大公因數(shù),公倍數(shù)和最小公倍數(shù)?
讓學(xué)生在小組里討論,結(jié)合討論適當(dāng)記錄自己的認(rèn)識或例子。
2.交流整理。
圍繞討論題,引導(dǎo)學(xué)生展開交流,結(jié)合交流板書主要內(nèi)容。
(1)提問:能說說什么是因數(shù)和倍數(shù)嗎?可以用例子說明。(結(jié)合交流板書一兩個乘法或除法算式)。
(指名學(xué)生說一說,再集體說一說)。
你能找出6的因數(shù)嗎?(板書因數(shù))6的倍數(shù)呢?(板書倍數(shù))。
能說說找一個數(shù)的因數(shù)或倍數(shù)的方法嗎?
說明:一個數(shù)的因數(shù)可以從小到大一對一對地找,到中間兩個因數(shù)之間沒有因數(shù)為止;一個數(shù)的倍數(shù)可以用依次乘1、2、3……這樣的方法找,注意一個數(shù)的倍數(shù)是無限的,寫一個數(shù)的倍數(shù)要注意用省略號。
(2)提問:2、5、3的倍數(shù)各有什么特征?我們是怎樣發(fā)現(xiàn)的?
自然數(shù)可以怎樣分類,各可以分成哪幾類?
你能舉出偶數(shù)和奇數(shù)、質(zhì)數(shù)和合數(shù)的一些例子嗎?(學(xué)生舉出各類數(shù)的例子)。
說明:按是不是2的倍數(shù)可以把自然數(shù)分成偶數(shù)和奇數(shù)兩類,是2的倍數(shù)的是偶數(shù),不是2的倍數(shù)的是奇數(shù);按因數(shù)的個數(shù)可以把自然數(shù)分成1和質(zhì)數(shù)、合數(shù)三類,只有兩個因數(shù)的是質(zhì)數(shù),有兩個以上因數(shù)的是合數(shù),1既不是質(zhì)數(shù)也不是合數(shù)。
什么是質(zhì)因數(shù)和分解質(zhì)因數(shù)?6有哪些質(zhì)因數(shù)?怎樣把6分解質(zhì)因數(shù)?(板書式子,并說明其中的質(zhì)因數(shù))。
(3)提問:什么是公因數(shù)和最大公因數(shù),什么是公倍數(shù)和最小公倍數(shù)?
說明:兩個數(shù)公有的因數(shù)叫公因數(shù),其中最大的叫最大公因數(shù);兩個數(shù)公有的倍數(shù)叫公倍數(shù),其中最小的叫最小公倍數(shù)。
結(jié)合交流內(nèi)容,逐步板書成:
l
質(zhì)數(shù)質(zhì)因數(shù)。
合數(shù)分解質(zhì)因數(shù)。
(互相依存)。
2、5、3的倍數(shù)的特征。
偶數(shù)。
奇數(shù)。
(4)引導(dǎo):請同學(xué)們現(xiàn)在觀察我們整理的這一單元學(xué)過的內(nèi)容,了解知識之間的聯(lián)系,同桌互相說說知識是怎樣發(fā)展的。
學(xué)生互相交流,教師巡視、傾聽。
交流:哪位同學(xué)能看黑板上整理的內(nèi)容,說說我們怎樣逐步認(rèn)識這些知識的,知識是怎樣發(fā)展起來的。
三、練習(xí)與應(yīng)用。
1.做“練習(xí)與應(yīng)用”第1題。
指名學(xué)生交流,說說每組里因數(shù)和倍數(shù)關(guān)系。
提問:3和7有沒有因數(shù)和倍數(shù)關(guān)系?為什么沒有?
2.做“練習(xí)與應(yīng)用”第2題。
(1)讓學(xué)生獨立寫出前四個數(shù)的所有因數(shù),指名兩人板演。
交流:你是怎樣找它們的因數(shù)的?(檢查板演題)。
(2)口答后三個數(shù)的因數(shù)。
引導(dǎo):能說出后面每個數(shù)的全部因數(shù)嗎?(學(xué)生口答,教師板書)。
提問:一個數(shù)的因數(shù)有什么特點?
說明:一個數(shù)因數(shù)的個數(shù)是有限的,最小的是1.最大的是它本身。
3.分別說出下面各數(shù)的倍數(shù)。
581217。
分別指名學(xué)生說出各數(shù)的倍數(shù),教師板書。
提問:為什么要寫省略號?一個數(shù)的倍數(shù)有什么特點?
說明:一個數(shù)倍數(shù)的個數(shù)是無限的,最小的是它本身,沒有最大的倍數(shù)。
4.做“練習(xí)與應(yīng)用”第3題。
(1)讓學(xué)生獨立完成填數(shù)。
交流:題里各是怎樣填的?(呈現(xiàn)結(jié)果)填數(shù)時怎樣想的?
提問:哪些數(shù)既是3的倍數(shù),又是5的倍數(shù)?你是怎樣想的?
哪些數(shù)既是2的倍數(shù),又是5和3的倍數(shù)?說說你的判斷方法。
(2)這里哪些數(shù)是偶數(shù)?奇數(shù)呢?
你是怎樣判斷偶數(shù)和奇數(shù)的?
5.做“練習(xí)與應(yīng)用”第4題。
要求學(xué)生獨立思考,自己選出兩張卡片,按各題的要求分別組成兩位數(shù),把能組成的數(shù)記錄下來。
交流:同時是5和3的倍數(shù)的數(shù)有哪些?(板書:30)如果是三位數(shù)呢?
(板書:180810)。
組成的兩位數(shù)中最大的偶數(shù)是多少?(板書:80)最小的奇數(shù)呢?(板書:13)。
6.做“練習(xí)與應(yīng)用”第5題。
讓學(xué)生把質(zhì)數(shù)圈出來,在合數(shù)下面畫線。
交流:哪些是質(zhì)數(shù),哪些是合數(shù)?(板書成兩類)質(zhì)數(shù)和合數(shù)是按什么分的?
說明:質(zhì)數(shù)只有2個因數(shù),合數(shù)至少有3個因數(shù)。
7.做“練習(xí)與應(yīng)用’’第6題。
交流、呈現(xiàn)結(jié)果。
提問:觀察表里選出的質(zhì)數(shù)和偶數(shù),所有的質(zhì)數(shù)都是奇數(shù)嗎?請舉出一個具體例子。
所有的合數(shù)都是偶數(shù)嗎?你能舉例子說明嗎?
指出:如果要說明一個結(jié)論是錯誤的,只要舉一個反例。比如,要判斷質(zhì)數(shù)都是奇數(shù)的說法是錯的,只要舉出質(zhì)數(shù)2是偶數(shù)這個例子。這里質(zhì)數(shù)2是偶數(shù)就是一個反例。要判斷合數(shù)都是偶數(shù)是錯的,也只要舉一個反例,比如合數(shù)9就是奇數(shù)。
8.下面的說法正確嗎?
(1)大于0的自然數(shù)不是奇數(shù)就是偶數(shù)。
(2)大于0的自然數(shù)不是質(zhì)數(shù)就是合數(shù)。
(3)奇數(shù)都是質(zhì)數(shù),偶數(shù)都是合數(shù)。
(4)自然數(shù)中最小的偶數(shù)是2,最小的合數(shù)是4。
(5)一個數(shù)本身既是它的因數(shù),又是它的倍數(shù)。
9.做“練習(xí)與應(yīng)用”第7題。
(1)讓學(xué)生填空,指名板演。交流并確認(rèn)結(jié)果。
提問:這里填寫的質(zhì)數(shù)都叫積的什么數(shù)?為什么稱它是積的質(zhì)因數(shù)?
說明:這里把合數(shù)寫成這種質(zhì)數(shù)相乘的形式,叫什么?
(2)把30、42分別分解質(zhì)因數(shù)。
學(xué)生完成,交流板書,檢查訂正。
四、全課總結(jié)。
提問:這節(jié)課主要復(fù)習(xí)的哪些內(nèi)容?你有哪些收獲?
將本文的word文檔下載到電腦,方便收藏和打印。
小學(xué)因數(shù)和倍數(shù)的教案(專業(yè)14篇)篇十三
知識與技能、過程與方法:
1、從操作活動中理解因數(shù)和倍數(shù)的意義,會判斷一個數(shù)是不是另一個數(shù)的因數(shù)或倍數(shù)。
2、培養(yǎng)學(xué)生抽象、概括的能力,滲透事物之間相互聯(lián)系、相互依存的觀點。
3、培養(yǎng)學(xué)生的合作意識、探索意識,以及熱愛數(shù)學(xué)學(xué)習(xí)的情感。
1、因數(shù)與倍數(shù)意義以及它們的相互依存關(guān)系。
2、尋找一個數(shù)的因數(shù)或倍數(shù)的方法。
教學(xué)準(zhǔn)備:課件。
教學(xué)流程:
流程1:導(dǎo)入新課。
流程2:認(rèn)識倍數(shù)和因數(shù)。
流程3:探索求一個數(shù)的因數(shù)的方法。
流程4:完成試一試,總結(jié)一個數(shù)因數(shù)的特點。
流程5:探索求一個數(shù)的倍數(shù)的方法。
流程6:完成試一試,總結(jié)一個數(shù)倍數(shù)的特點。
流程7:完成智慧樂園。
流程8:完成質(zhì)疑樂園。
流程9:數(shù)學(xué)游戲。
流程11:課堂小結(jié)。
流程10:組織學(xué)生退場。
第一段:導(dǎo)入新課。
流程1:導(dǎo)入新課。
師:課前我們先來做個腦筋急轉(zhuǎn)彎,看看誰最聰明?
(學(xué)生發(fā)表自己的看法)。
今天,我們就把這三個人請到我教室里來好嗎?(課件出示圖片)你能不能以大李為中心,來介紹一下小老和老李。(學(xué)生說一說)。
師:我們能不能單獨地來說,大李是爸爸?(不能)為什么?
引出相互依存(板書)。
第二段:認(rèn)識倍數(shù)和因數(shù)。
流程2:認(rèn)識倍數(shù)和因數(shù)。
1、用課前準(zhǔn)備的12張同樣大的正方形紙片拼成一個長方形。前后四人一組。
要求:
(1)、看一共能擺出幾種完全不同的長方形。
(2)、想一想怎樣用乘法算式表示你的擺法。
(3)、為了便于展示,請在你的課本反面來擺。
(學(xué)生動手操作、匯報)。
師:請你用乘法算式表示你的擺法?
生:1×12=122×6=123×4=12。
師:為了避免重復(fù),我們可經(jīng)只選擇其中一個算式。我們以前學(xué)過,在乘法算式里,乘號前面和后面的數(shù)都叫什么?(因數(shù))等號后面的數(shù)叫什么?(積)這里的因數(shù)和積是乘法算式各部分的名稱。其實,因數(shù)和積之間就存在我們課前提到的相互依存關(guān)系。以3×4=12為例,數(shù)學(xué)上說12是4的倍數(shù),12也是3的倍數(shù),4和3都是12的因數(shù)。這里因數(shù)和倍數(shù)就具有相互依存的關(guān)系。不能孤立地說3是因數(shù),也不能孤立地說12的倍數(shù),這就是今天這節(jié)課我們研究:倍數(shù)和因數(shù)。
師:那根據(jù)另外兩個乘法算式,同學(xué)們會說哪個數(shù)是哪個數(shù)的倍數(shù),哪個數(shù)是哪個數(shù)的因數(shù)嗎?請同桌相互說一說(學(xué)生活動)。
老師這是里有兩道算式,你會說嗎?
8×9=7218÷3=6。
(請學(xué)生來說一說)。
師:同學(xué)們,倍數(shù)、因數(shù)指的是兩個自然數(shù)之間的一種關(guān)系,所以我們一定要說清楚誰是誰的倍數(shù),誰是誰的因數(shù),,老師還要補充說一點,為了方便,我們在研究時,所說的數(shù)一般指不是0的自然數(shù)。
第三段:探索求倍數(shù)和因數(shù)的方法。
流程3:探索求一個數(shù)的因數(shù)的方法。
師:同學(xué)們怎樣找一個數(shù)的因數(shù)呢?同學(xué)們愿意獨立思考,嘗試解決嗎?面對新問題,看看誰能挑戰(zhàn)成功。
師:你能找出36所有的因數(shù)嗎?請同學(xué)們試著在練習(xí)本上寫一寫。
(學(xué)生活動)學(xué)生匯報。
師:從1開始,想哪兩個數(shù)相乘得36,我們就可以成對地寫出36的因數(shù),一直找到兩個乘數(shù)最接近為止。解決這個問題首先要考慮什么樣的數(shù)是36的.因數(shù)。如果有兩個數(shù)相乘的積是36,那么這兩個數(shù)都是36的因數(shù)。例如,1×36=36,那么1和36都是36的因數(shù)。
師:看看老師的填法和你一樣嗎?
師:求一個數(shù)的因數(shù),可以想乘法算式,也可以想除法算式,但都要有序思考,做到不重復(fù)、不遺漏。
流程4:完成試一試,總結(jié)一個數(shù)的因數(shù)的特點。
師:下面請同學(xué)們用你喜歡或熟悉的方法寫出你自己所喜歡的數(shù)字的因數(shù)。(學(xué)生活動)相機尋找學(xué)生板書。
師:通過觀察上面同學(xué)所寫的數(shù)的因數(shù),你發(fā)現(xiàn)了什么?學(xué)生說一說(完成表格)。
師小結(jié):一個數(shù)最小的因數(shù)是1,最大的因數(shù)是它本身;一個數(shù)因數(shù)的個數(shù)是有限的。
寫出你的學(xué)號的所有因數(shù)。
流程5:探索求一個數(shù)的倍數(shù)的方法。
師:同學(xué)們先想一想,什么樣的數(shù)是3的倍數(shù)?怎樣才能準(zhǔn)確地寫出3的倍數(shù)?把你的想法和小組里的同學(xué)交流一下。(學(xué)生活動)。
師:同學(xué)們一定能想到,3的倍數(shù)就是3和除0以外的一個自然數(shù)相乘的積。例如3×1=(3),3×2=(6),3×3=(9),括號里的數(shù)都是3的倍數(shù)。這樣我們按從小到大的順序,用乘法就可以有條理地說出3的倍數(shù)了,它們是:3、6、9、12、15、18。能把3的倍數(shù)全部說完嗎?說不完,那應(yīng)該怎樣表示問題的答案呢?因為3的倍數(shù)的個數(shù)是無限的,所以寫的時候要借助省略號來完整地表示出結(jié)果。
流程6:完成試一試,總結(jié)一個數(shù)的倍數(shù)的特點。
師:下面就請同學(xué)們用這種方法分別寫出2的倍數(shù)和5的倍數(shù)。注意要有順序地思考,并且規(guī)范地表示出結(jié)果。(學(xué)生活動)。
師:老師和同學(xué)們核對一下答案,如果出錯了,一定要分析原因,再訂正。(核對答案)。
師:現(xiàn)在我們已經(jīng)找到了求一個數(shù)的倍數(shù)的方法,并用這樣的方法分別求出3、2、5的倍數(shù),請同學(xué)們觀察上面的例子,你們能發(fā)現(xiàn)一個數(shù)的倍數(shù)有什么特點嗎?大膽地說出你們的想法。(學(xué)生活動)。
師小結(jié):仔細觀察,同學(xué)們會發(fā)現(xiàn):一個數(shù)最小的倍數(shù)是它本身,沒有最大的倍數(shù);一個數(shù)倍數(shù)的個數(shù)是無限的。
第四段:深化認(rèn)識,鞏固方法。
流程7:完成智慧樂園。
師:請看想想做做第3題。先填表,再討論回答下面的問題:表中每欄的每排人數(shù)各是怎樣算出來的?排數(shù)和每排人數(shù)都是24的什么數(shù)?在填表的過程中你還受到了什么啟發(fā)?(學(xué)生活動)。
師:24÷3=8,÷4=6,÷6=4,÷8=3,÷12=2,÷24=1,表中排數(shù)和每排人數(shù)都是24的因數(shù)。在填表的過程中我們會發(fā)現(xiàn)一對一對地找一個數(shù)的因數(shù)比較方便。
流程8:完成質(zhì)疑樂園。
先判斷對錯,再說一說自己的判斷理由。
第五段:數(shù)學(xué)游戲。
流程9:數(shù)學(xué)游戲。
師:請同學(xué)們拿出寫有自己學(xué)號的卡片,我們一起來做個游戲。看一看,想一想,你卡片上的數(shù)是否符合下面的條件,符合的請舉起卡片,揮一揮。(課件出示)我是5,我找我的倍數(shù);(學(xué)生活動)我是24,我找我的因數(shù);(學(xué)生活動)我是1,我找我的倍數(shù);(學(xué)生活動)我是30,我找我的因數(shù)。(學(xué)生活動)。
第六段:全課總結(jié)。
流程10:課堂總結(jié)。
師:同學(xué)們,這節(jié)課我們認(rèn)識了倍數(shù)和因數(shù),探索了找一個數(shù)的倍數(shù)和因數(shù)的方法,根據(jù)乘法算式,用這一個數(shù)分別乘1、乘2、乘3……可以有順序地找到它的倍數(shù)。一個數(shù)倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù)。找一個數(shù)的因數(shù)可以想乘法算式,把一個數(shù)寫成兩個數(shù)相乘的積,乘數(shù)就是這個數(shù)的因數(shù);也可以想除法算式,用一個數(shù)依次去除以1、2、3……,能得到整數(shù)商的,除數(shù)和商就是它的因數(shù)。寫因數(shù)時根據(jù)算式有順序的一對一對地寫比較方便,不容易遺漏或重復(fù)。一個數(shù)的因數(shù)的個數(shù)是有限的,最小的因數(shù)是1,最大的因數(shù)是它本身。
流程11:組織下課。
組織學(xué)生分批退場。
小學(xué)因數(shù)和倍數(shù)的教案(專業(yè)14篇)篇十四
(父子、母子、母女關(guān)系)我和你們的關(guān)系是?(師生關(guān)系)。
在數(shù)學(xué)中,數(shù)與數(shù)之間也存在著多種關(guān)系,這節(jié)課,我們一起研究兩數(shù)之間的因數(shù)與倍數(shù)關(guān)系。
(二)探究新知-理解因數(shù)和倍數(shù)的意義。
教學(xué)例1:
1.觀察算式的特點,進行分類。
(1)仔細觀察算式的特點,你能把這些算式分類嗎?
(2)交流學(xué)生的分類情況。(預(yù)設(shè):學(xué)生會根據(jù)算式的計算結(jié)果分成兩類)。
第一類是被除數(shù)、除數(shù)、商都是整數(shù);第二類是被除數(shù)、除數(shù)都是整數(shù),而商不是整數(shù)。
2.明確因數(shù)和倍數(shù)的意義。
(1)同學(xué)們,在整數(shù)除法中,如果商是整數(shù)而沒有余數(shù),我們就說被除數(shù)是除數(shù)的倍數(shù),除數(shù)是被除數(shù)的因數(shù)。例如,12÷2=6,我們就說12是2的倍數(shù),2是12的因數(shù)。12÷6=2,我們就說12是6的倍數(shù),6是12的因數(shù)。
(2)在第一類算式中找一個算式,說一說,誰是誰的因數(shù)?誰是誰的倍數(shù)?
(3)強調(diào)一點:為了方便,在研究倍數(shù)與因數(shù)的時候,我們所說的數(shù)指的是自然數(shù)(一般不包括0)。
3.理解因數(shù)和倍數(shù)的依存關(guān)系。
(1)獨立完成教材第5頁“做一做”。
(2)我們能不能說“4是因數(shù)”“24是倍數(shù)”呢?表述時應(yīng)該注意什么?
4.理解一個數(shù)的“因數(shù)”和乘法算式中的“因數(shù)”的區(qū)別以及一個數(shù)的“倍數(shù)”與“倍”的區(qū)別。
(1)今天學(xué)的一個數(shù)的“因數(shù)”與以前乘法算式中的“因數(shù)”有什么區(qū)別呢?
課件出示:
乘法算式中的“因數(shù)”是相對于“積”而言的,可以是整數(shù),也可以是小數(shù)、分?jǐn)?shù);而一個數(shù)的“因數(shù)”是相對于“倍數(shù)”而言的,它只能是整數(shù)。
(2)今天學(xué)的“倍數(shù)”與以前的“倍”又有什么不同呢?
“倍數(shù)”是相對于“因數(shù)”而言的,只適用于整數(shù);而“倍”適用于小數(shù)、分?jǐn)?shù)、整數(shù)。
(3)交流匯報。
(三)探究新知-找一個數(shù)的因數(shù)。
教學(xué)例2:
1.探究找18的因數(shù)的方法。
(1)18的因數(shù)有哪些?你是怎么找的?
(2)交流方法。
預(yù)設(shè):方法一:根據(jù)因數(shù)和倍數(shù)的意義,通過除法算式找18的因數(shù)。
因為18÷1=18,所以1和18是18的因數(shù)。
因為18÷2=9,所以2和9是18的因數(shù)。
因為18÷3=6,所以3和6是18的.因數(shù)。
方法二:根據(jù)尋找哪兩個整數(shù)相乘的積是18,尋找18的因數(shù)。
因為1×18=18,所以1和18是18的因數(shù)。
因為2×9=18,所以2和9是18的因數(shù)。
因為3×6=18,所以3和6是18的因數(shù)。
2.明確18的因數(shù)的表示方法。
(1)我們怎樣來表示18的因數(shù)有哪些呢?怎樣表示簡潔明了?
(2)交流方法。
預(yù)設(shè):列舉法,18的因數(shù)有:1,2,3,6,9,18。
集合圖的方法(如下圖所示)。
3.練習(xí)找一個數(shù)的因數(shù)。
(1)你能找出30的因數(shù)有哪些嗎?36的因數(shù)呢?
(2)怎樣找才能不遺漏、不重復(fù)地找出一個數(shù)的所有因數(shù)?
(四)探究新知-找一個數(shù)的倍數(shù)。
教學(xué)例3:
1.探究找2的倍數(shù)的方法。
(1)2的倍數(shù)有哪些?你是怎么找的?
(2)想方法:利用乘法算式找2的倍數(shù)。
因為2×1=2,所以2是2的倍數(shù)。
因為2×2=4,所以4是2的倍數(shù)。
因為2×3=6,所以6是2的倍數(shù)。……。
(3)2的倍數(shù)能寫完嗎?你能繼續(xù)找嗎?寫不完怎么辦?
(4)根據(jù)前面的經(jīng)驗,試著表示出2的倍數(shù)有哪些?(預(yù)設(shè):列舉法、集合圖的方法)。
2.練習(xí)找一個數(shù)的倍數(shù)。
你能找出3的倍數(shù)有哪些嗎?5的倍數(shù)呢?
(五)我的發(fā)現(xiàn)-因數(shù)與倍數(shù)的特征。
舉例子,找規(guī)律,勾畫知識點,讀一讀。
預(yù)設(shè):一個數(shù)的因數(shù)的個數(shù)是有限的,最小的因數(shù)是1,最大的因數(shù)是它本身;一個數(shù)的倍數(shù)的個數(shù)是無限的,沒有最大的倍數(shù),最小的倍數(shù)是它本身。1是所有非零自然數(shù)的因數(shù)。
(六)智慧樂園。
1.在練習(xí)本上完成下列填空題。(獨立完成后,師訂正答案)。
一個數(shù)的最大因數(shù)是17,這個數(shù)是(),它的最小的因數(shù)是()。
一個數(shù)的最小倍數(shù)是17,這個數(shù)是(),它()最大的倍數(shù),17的倍數(shù)的個數(shù)是().
一個數(shù)既是12的因數(shù),又是12的倍數(shù),這個數(shù)是()。
2.在練習(xí)本上完成下列判斷題。(獨立完成后,師訂正答案)。
(1)在算式6×4=24中,6是因數(shù),24是倍數(shù)。()。
(2)15的倍數(shù)一定大于15。()。
(3)1是除0以外所有自然數(shù)的因數(shù)。()。
(4)40以內(nèi)6的倍數(shù)有12、18、24、30、36這5個。()。
(5)34的最小倍數(shù)是34;34的最小因數(shù)是17。()。
(6)1.2是3的倍數(shù)。()。
(七)全課總結(jié),交流收獲。
這節(jié)課我們學(xué)了哪些知識?你有什么收獲?
(八)布置作業(yè)。
完成課時練第3、4頁,提交家校本。