教學工作計劃的編寫需要教師對教材內容和教學方法有全面的了解和把握。希望這些教學工作計劃范文能夠給大家帶來啟發和幫助,使我們在教學工作中更加出色和有成效。
人教版七年級數學教案設計(實用18篇)篇一
教學重難點分析:
1、學情分析:從知識基礎看,學生在小學已學習了求正方形的面積及正方體的體積,具備求一個正數的平方和立方的知識水平,且剛學完有理數的乘法,能幫助學生很好的理解乘方的定義及表示,實現知識的正遷移。但學生對于有理數乘方的符號法則的掌握上會有難度,對于這類計算容易混淆,是本節課的難點。
2、教學重、難點。
教學重點:理解乘方定義,會進行有理數的乘方運算;。
教學難點:有理數乘方運算的符號法則的形成與運用。
教法學法分析:
教法:啟發式教學,多媒體輔助教學;。
學法:觀察、比較、歸納,合作探究。
教學過程設計:
1、創設情境提出問題。
(1)、邊長為3的正方形的面積是___3×3可以記作___,讀作_________.
(2)、棱長為3的正方體的體積是___3×3×3可以記作___,讀作_________.
通過創設問題情境,喚起舊知,為學習新知做好鋪墊。
2、自主探索形成新知。
觀察下列各式有何特征?
(1)2×2×2×2=。
(2)(-3)×(-3)×(-3)=。
引導學生通過類比、探究、歸納乘方定義及表示,實現知識的遷移,培養學生歸納、概括的能力。明確乘方是乘法的特殊形式,體現化歸的數學思想。
3、應用新知鞏固概念。
4、探索研究發現規律。
通過題組訓練,探索規律,合作交流,獲得乘方運算的符號法則,充分發揮學生的學習主體作用,體現分類的數學思想。
5、應用新知鞏固訓練。
進一步鞏固學生對符號法則的運用及利用乘方的知識解決問題的能力。
6、拓展思維知識延伸。
利用故事提高學生學習數學興趣,培養學生應用數學解決解決問題能力,激發學生的探索的熱情。
7、課堂小結歸納反思。
鍛煉學生及時總結的良好習慣和歸納能力。
教學評價分析:
對學生探究過程的參與及與同學合作交流進行評價,以增強學生學習主動性;。
(1)關注學生的智力參與度。
(2)學生的課堂參與度。
2、對不同層次的學生采取分層練習的評價方式,以滿足不同層次的學生知識技能的發展。
人教版七年級數學教案設計(實用18篇)篇二
上個星期考了第五章的檢測題,總體做的不是太好,沒有高分。這段時間上課感覺還可以,可考出的成績不理想。每個小組我給算出來了平均分,各個小組之間的差距也很大,有的小組平均分在六十分以上,有的才四十多分。這段時間各個小組的表現也基本和這次成績差不多,上課表現比較積極都參入進來的小組平均分就會高,如果小組中有兩三個不積極去用心學的這個組的平均成績就不高。
可能當時學這一章的時候有點快,有一些知識已經遺忘了。本章的檢測題難度不大,可容易出錯的地方比較多。特別是選擇題學生普遍做的很差,像找對頂角對數的、相等角的對數,這樣的題目對學生來說總是數不準。可能也是因為在上課時這方面訓練的不夠,以后要多注意這些題目。再一方面是學生的做題步驟還書寫不規范。他們總是想著只寫出答案,中間的過程不知道怎么去寫,這個還要進一步的加強。
有一些題目也是老師反復強調的題目,上課時看他們的反應也是都會了的,可一到考試了不知怎么就不會做了。是不是還是訓練的太少了,還要進一步加強他們的記憶力。
將本文的word文檔下載到電腦,方便收藏和打印。
人教版七年級數學教案設計(實用18篇)篇三
一、指導思想:
人教版七年級數學上冊教學計劃,本班學生剛剛完成小學六年的學習,升入初一,也就是我們現在所說的七年級。通過調閱小六畢業會考成績冊和試卷,發現本班學生的數學成績不甚理想。從學生作答來看,基礎知識不扎實,計算能力較差,思路不靈活,缺乏創新思維能力,尤其是解難題的能力低下。總體上來看,低分很多,兩極分化較為嚴重。
二、情況分析:
學生情況分析:
全面貫徹黨的十七大教育方針,以七年能數學教學大綱為標準,堅決完成《初中數學新課程標準》提出的各項基本教學目標。制定人教版七年級數學上冊教學計劃,根據學生的實際情況,從生活入手,結合教材內容,精心設計教學方案。通過本學期數學課堂教學,夯實學生的基礎,提高學生的基本技能,培養學生學習數學知識和運用數學知識的能力,幫助學生初步建立數學思維模式。最終圓滿完成七年級上冊數學教學任務。
三、教學目標。
人教版七年級數學上冊教學計劃知識與技能目標:認識有理數和代數式,掌握有理數的各種性質和運算法則,初步學會使用代數式探究數量之間的關系。認識基本幾何圖形,掌握基本基本作圖能力和的技巧。過程與方法目標:學會抽取實際問題中的數學信息,發展幾何思維模式。培養學生的觀察和思維能力,尤其是自主探索的能力。情感與態度目標:培養學生學習數學的興趣,認識數學源自生活實踐,最終回歸生活。班級教學目標:優秀率:15%,合格率80%。
四、教材分析。
第一章、有理數:本章主要學習有理數的基本性質及運算。本章重點內容是有理數的概念,性質和運算。本章的難點在于理解有理數的基本性質、運算法則,并將它們應用到解決實際問題和計算中。
第二章、整式的加減:本章主要是學習單項式和多項式的加減運算。本章重點內容是單項式、多項式、同類項的概念;合并同類項及去括號的法則及整式的加減運算。本章難點在于理解合并同類項和去括號的法則。
第三章、一元一次方程:本章主要學習一元一次方程的概念、等式的基本性質、一元一次方程的解法及應用。本章重點內容是理解等式的基本性質;掌握解一元一次方程的一般步驟;列方程解決實際問題的基本思路。本章難點在于解一元一次方程,并利用一元一次方程解決簡單的實際問題。
第四章、圖形認識初步:本章主要學習線段和角有關的性質。本章的重點是區別直線、射線、線段,角的有關性質和計算;理解互為余角、互為補角的性質及應用。本章的難點在于線段和角的有關計算。
五、教學措施。
1、人教版七年級數學上冊教學計劃,認真研讀新課程標準,潛心鉆研教材,根據新課程標準,結合學生實際情況,進行針對性的備課,精心設置課堂教學內容和模式。上好每一堂課,閱好每一份試卷,搞好每一節輔導,組織好每一次測驗。
2、開展豐富多彩的課外活動,課外調查,向學生介紹數學家、數學史、數學趣題,喻教于樂,激發學生的學習興趣,挖掘學生的潛能,培養數學特長生。
3、開展分層教學實驗,使不同的學生學到不同的知識,使人人能學到有用的知識,使不同的人得到不同的發展,獲得成功感,使優生更優,差生逐漸趕上。
人教版七年級數學教案設計(實用18篇)篇四
3,體驗數形結合的思想。
教學難點歸納相反數在數軸上表示的點的特征。
知識重點相反數的概念。
教學過程(師生活動)設計理念。
設置情境。
引入課題問題1:請將下列4個數分成兩類,并說出為什么要這樣分類。
4,-2,-5,+2。
允許學生有不同的分法,只要能說出道理,都要難予鼓勵,但教師要做適當的引導,逐漸得出5和-5,+2和-2分別歸類是具有較特征的分法。
(引導學生觀察與原點的距離)。
思考結論:教科書第13頁的思考。
再換2個類似的數試一試。
培養學生的觀察與歸納能力,滲透數形思想。
深化主題提煉定義給出相反數的定義。
學生思考討論交流,教師歸納總結。
規律:一般地,數a的相反數可以表示為-a。
思考:數軸上表示相反數的兩個點和原點有什么關系?
練一練:教科書第14頁第一個練習體驗對稱的圖形的特點,為相反數在數軸上的特征做準備。
深化相反數的概念;“零的相反數是零”是相反數定義的一部分。
強化互為相反數的數在數軸上表示的點的幾何意義。
給出規律。
解決問題問題3:-(+5)和-(-5)分別表示什么意思?你能化簡它們嗎?
學生交流。
分別表示+5和-5的相反數是-5和+5。
練一練:教科書第14頁第二個練習利用相反數的概念得出求一個數的相反數的方法。
小結與作業。
課堂小結1,相反數的定義。
2,互為相反數的數在數軸上表示的點的特征。
3,怎樣求一個數的相反數?怎樣表示一個數的相反數?
本課作業1,必做題教科書第18頁習題1.2第3題。
2,選做題教師自行安排。
本課教育評注(課堂設計理念,實際教學效果及改進設想)。
1,相反數的概念使有理數的各個運算法則容易表述,也揭示了兩個特殊數的特征.這兩個特殊數在數量上具有相同的絕對值,它們的和為零,在數軸上表示時,離開原點的距離相等等性質均有廣泛的應用.所以本教學設計圍繞數量和幾何意義展開,滲透數形結合的思想.
2,教學引人以開放式的問題人手,培養學生的分類和發散思維的能力;把數在數軸上表示出來并觀察它們的特征,在復習數軸知識的同時,滲透了數形結合的數學方法,數與形的相互轉化也能加深對相反數概念的理解;問題2能幫助學生準確把握相反數的概念;問題3實際上給出了求一個數的相反數的方法.
3,本教學設計體現了新課標的教學理念,學生在教師的引導下進行自主學習,自主探究,觀察歸納,重視學生的思維過程,并給學生留有發揮的余地.
課題:1.2.4絕對值。
教學目標1,掌握絕對值的概念,有理數大小比較法則.
2,學會絕對值的計算,會比較兩個或多個有理數的大小.
3.體驗數學的概念、法則來自于實際生活,滲透數形結合和分類思想.
教學難點兩個負數大小的比較。
知識重點絕對值的概念。
教學過程(師生活動)設計理念。
設置情境。
學生思考后,教師作如下說明:
實際生活中有些問題只關注量的具體值,而與相反。
觀察并思考:畫一條數軸,原點表示學校,在數軸上畫出表示朱家尖和黃老師家的點,觀察圖形,說出朱家尖黃老師家與學校的距離.
學生回答后,教師說明如下:
一般地,數軸上表示數a的點與原點的距離叫做數a的絕對值,記做|a|。
驗數學知識與生活實際的聯系.
將本文的word文檔下載到電腦,方便收藏和打印。
人教版七年級數學教案設計(實用18篇)篇五
1、單項式。
對數字和若干個字母施行有限次乘法運算,所得的代數式叫做單項式.單獨一個數或一個字母也是單項式.
2、系數。
單項式中的數字因數叫做這個單項式的系數.
3、單項式的次數。
一個單項式中,所有字母的指數的和叫做這個單項式的次數.
4、多項式。
幾個單項式的和叫做多項式.
5、多項式的項。
在多項式中,每個單項式叫做多項式的項.
-6是常數項.
6、常數項。
多項式中,不含字母的項叫做常數項.
7、多項式的次數。
多項式里,次數最高的項的次數,就是這個多項式的次數.
8、降冪排列。
把一個多項式,按某一個字母的指數從大到小的順序排列起來,叫做把多項式按這個字母降冪排列.
9、升冪排列。
把一個多項式,按某一個字母的指數從小到大的順序排列起來,叫做把多項式按這個字母升冪排列.
10、整式。
單項式和多項式統稱整式。
11、同類項。
所含字母相同,并且相同字母的次數也相同的項,叫做同類項.常數項都是同類項.
12、合并同類項。
把多項式中的同類項合并成一項,叫做合并同類項.
合并同類項的法則是:
同類項的系數相加,所得的結果作為系數,字母和字母的指數不變.
13、去括號法則。
括號前是“+”號,把括號和它前面的“+”號去掉,括號里各項都不變符號;。
括號前是“-”號,把括號和它前面的“-”號去掉,括號里各項都改變符號.
例:a+(b-2c)-(e-2d)=a+b-2c-e+2d。
14、添括號法則。
添括號后,括號前面是“+”號,括到括號里的各項都不變符號;。
添括號后,括號前面是“-”號,括到括號里的各項都改變符號.
例:m+2x-y+z-5=m+(2x-y)-(-z+5)。
15、整式的加減。
整式加減的一般步驟:
1.如果遇到括號,按去括號法則先去括號;。
2.合并同類項.
16、代數式的恒等變形一個代數式用另一個與它恒等的表達式去代換,叫做恒等變形.
人教版七年級數學教案設計(實用18篇)篇六
1.有序數對:用含有兩個數的詞表示一個確定的位置,其中各個數表示不同的含義,我們把這種有順序的兩個數a與b組成的數對,叫做有序數對,記作(a,b)其中a表示橫軸,b表示縱軸。
2.平面直角坐標系:在同一個平面上互相垂直且有公共原點的兩條數軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數軸分別置于水平位置與垂直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做x軸或橫軸,豎直的數軸叫做y軸或縱軸,x軸或y軸統稱為坐標軸,它們的公共原點o稱為直角坐標系的原點。
3.橫軸、縱軸、原點:水平的數軸稱為x軸或橫軸;豎直的數軸稱為y軸或縱軸;兩坐標軸的交點為平面直角坐標系的原點。
4.坐標:對于平面內任一點p,過p分別向x軸,y軸作垂線,垂足分別在x軸,y軸上,對應的數a,b分別叫點p的橫坐標和縱坐標。
5.象限:兩條坐標軸把平面分成四個部分,右上部分叫第一象限,按逆時針方向一次叫第二象限、第三象限、第四象限。坐標軸上的點不在任何一個象限內。
6.特殊位置的點的坐標的特點。
(1)x軸上的點的縱坐標為零;y軸上的點的橫坐標為零。
(2)第一、三象限角平分線上的點橫、縱坐標相等;第二、四象限角平分線上的點橫、縱坐標互為相反數。
(3)在任意的兩點中,如果兩點的橫坐標相同,則兩點的連線平行于縱軸;如果兩點的縱坐標相同,則兩點的連線平行于橫軸。
(4)點到軸及原點的距離。
7.在平面直角坐標系中對稱點的特點。
(1)關于x成軸對稱的點的坐標,橫坐標相同,縱坐標互為相反數。(橫同縱反)。
(2)關于y成軸對稱的點的坐標,縱坐標相同,橫坐標互為相反數。(橫反縱同)。
(3)關于原點成中心對稱的點的坐標,橫坐標與橫坐標互為相反數,縱坐標與縱坐標互為相反數。(橫縱皆反)。
數學q是什么意思。
q是有理數集,但q并不表示有理數,有理數集與有理數是兩個不同的概念。有理數集是元素為全體有理數的集合,而有理數則為有理數集中的所有元素。有理數是整數(正整數、0、負整數)和分數的統稱,是整數和分數的集合。
學數學的方法有哪些。
抓好預習環節預習。
這是上課前做好接受新知識的準備過程。有些學生由于沒有預習習慣,對老師一堂課要講的內容一無所知,坐等教師講課,顯得呆板被動。有些學生雖能預習,但看起書來卻似走馬觀花,,這種預習一點也達不到效果。
認真做題。
課堂練習是最及時最直接的反饋,一定不能錯過。不要急于完成作業,要先看看你的筆記本,回顧學習內容,加深理解,強化記憶。
及時糾錯。
課堂練習、作業、檢測,反饋后要及時查閱,分析錯題的原因,必要時強化相關計算的訓練。不明白的問題要及時向同學和老師請教了,不能將問題處于懸而未解的狀態,養成今日事今日畢的好習慣。
總結那些相似的數學題目。
當我們養成了總結歸納的習慣,那么的學生就會知道自己在解決數學題目的時候哪些是自己比較擅長的,哪些是自己還不足的。
同時善于總結也會明白自己掌握哪些數學的解題方法,只有這樣你才能夠真正掌握了數學的解題技巧。其實,做到總結和歸納是學會數學的關鍵,如果學生不會做到這一點那么久而久之,不會的數學題目還是不會。
人教版七年級數學教案設計(實用18篇)篇七
1,掌握有理數的概念,會對有理數按照一定的標準進行分類,培養分類能力;。
2,了解分類的標準與分類結果的相關性,初步了解“集合”的含義;。
3,體驗分類是數學上的常用處理問題的方法。
教學難點正確理解分類的標準和按照一定的標準進行分類。
知識重點正確理解有理數的概念。
教學過程(師生活動)設計理念。
探索新知在前兩個學段,我們已經學習了很多不同類型的數,通過上兩節課的學習,又知道了現在的數包括了負數,現在請同學們在草稿紙上任意寫出3個數(同時請3個同學在黑板上寫出).
問題1:觀察黑板上的9個數,并給它們進行分類.
學生思考討論和交流分類的情況.
學生可能只給出很粗略的分類,如只分為“正數”和“負數”或“零”三類,此時,教師應給予引導和鼓勵.
例如,
對于數5,可這樣問:5和5.1有相同的類型嗎?5可以表示5個人,而5.1可以表示人數嗎?(不可以)所以它們是不同類型的數,數5是正數中整個的數,我們就稱它為“正整數”,而5.1不是整個的數,稱為“正分數,,.??…(由于小數可化為分數,以后把小數和分數都稱為分數)。
通過教師的引導、鼓勵和不斷完善,以及學生自己的概括,最后歸納出我們已經學過的5類不同的數,它們分別是“正整數,零,負整數,正分數,負分數,’.
按照書本的說法,得出“整數”“分數”和“有理數”的概念.
看書了解有理數名稱的由來.
“統稱”是指“合起來總的名稱”的意思.
學生自己嘗試分類時,可能會很粗略,教師給予引導和鼓勵,劃分數的類型要從文字所表示的意義上去引導,這樣學生易于理解。
有理數的分類表要在黑板或媒體上展示,分類的標準要引導學生去體會。
練一練1,任意寫出三個有理數,并說出是什么類型的數,與同伴進行交流.
2,教科書第10頁練習.
此練習中出現了集合的概念,可向學生作如下的說明.
數集一般用圓圈或大括號表示,因為集合中的數是無限的,而本題中只填了所給的幾個數,所以應該加上省略號.
思考:上面練習中的四個集合合并在一起就是全體有理數的集合嗎?
也可以教師說出一些數,讓學生進行判斷。
集合的概念不必深入展開。
創新探究問題2:有理數可分為正數和負數兩大類,對嗎?為什么?
教學時,要讓學生總結已經學過的數,鼓勵學生概括,通過交流和討論,教師作適當的指導,逐步得到如下的分類表。
有理數這個分類可視學生的程度確定是否有必要教學。
小結與作業。
課堂小結到現在為止我們學過的數都是有理數(圓周率除外),有理數可以按不同的標準進行分類,標準不同,分類的結果也不同。
本課作業1,必做題:教科書第18頁習題1.2第1題。
2,教師自行準備。
本課教育評注(課堂設計理念,實際教學效果及改進設想)。
1,本課在引人了負數后對所學過的數按照一定的標準進行分類,提出了有理數的概。
念.分類是數學中解決問題的常用手段,通過本節課的學習使學生了解分類的思想并進。
行簡單的分類是數學能力的體現,教師在教學中應引起足夠的重視.關于分類標準與分。
類結果的關系,分類標準的確定可向學生作適當的滲透,集合的概念比較抽象,學生真正接受需要很長的過程,本課不要過多展開。
2,本課具有開放性的特點,給學生提供了較大的思維空間,能促進學生積極主動地參加學習,親自體驗知識的形成過程,可避免直接進行分類所帶來的枯燥性;同時還體現合作學習、交流、探究提高的特點,對學生分類能力的養成有很好的作用。
3,兩種分類方法,應以第一種方法為主,第二種方法可視學生的情況進行。
人教版七年級數學教案設計(實用18篇)篇八
1、讓學生生自主探索小數的加、減法的計算方法,理解計算的算理并能正確地進行加、減法。
2、使學生體會小數加減運算在生活、學習中的廣泛應用,體會數學的工具性作用。
3、激發學生學習小數加減法的興趣,涌動長大后也要為國爭光的豪情,提高學習的主動性和自覺性。
教學重難點。
教學重點:用豎式計算小數加減法。
教學難點:理解小數點對齊的算理。
教學工具。
多媒體課件。
教學過程。
(一)情景引入。
師:同學們,你們還記得嗎?整數的加減法是怎樣計算的?讓我們用一道習題回顧一下。
(呈現多媒體,學生自主完成習題并總結計算算理)。
師:同學們你們可真棒,那么今天我們學習小數的加減法(引出課題并板書)。
(二)例題講解。
(1)小麗買了下面兩本書,一共花了多少錢?
(2)《數學家的故事》比《童話選》貴多少錢?
生:好的。
(展示小麗遇到的問題(1),并讓學生列出算式)。
師:根據咱們總結的整數加減法的算理,想一想這個式子怎么計算呢?
(讓學生大膽的去嘗試,小組討論,并列出豎式)。
師:你們發現小數加減法計算時需要注意什么?
生1:注意數位對齊。
生2:注意小數點要對齊。
生3:……。
老師小結:小數點要對齊,得數的小數點也要對齊。
師:小麗啊還有一個問題讓我們看一看(展示問題(2))。
(讓學生自主解決,并再回憶需要注意什么?)。
完成后學生給予總結,完成小數加減法的時候需要注意什么?
(三)習題鞏固。
課本72頁做一做。
課后小結。
學生談一談本節課你學到了什么?
給出總結:計算小數加、減法,先把各數的小數點對齊(也就是把相同數位上的數對齊),再按照整數加、減法的法則進行計算,最后在得數里對齊橫線上的小數點點上小數點。
課后習題。
一、計算。
1.5-0.5=1-0.9=2.3+0.6=0.9+0.8=。
1.9-0.8=3.5-2.4=0.36+0.65=0.96-0.32=。
二、豎式計算。
20.87-3.65=3.25+1.73=。
18.77+3.14=23.5-2.8=。
三、解決問題。
1、小紅買文具,買鋼筆用去6.7元,買文具盒用去9.8元,一共用去多少錢?
板書。
計算小數加、減法,先把各數的小數點對齊(也就是把相同數位上的數對齊),再按照整數加、減法的法則進行計算,最后在得數里對齊橫線上的小數點點上小數點。
人教版七年級數學教案設計(實用18篇)篇九
1、這堂課從簡單問題入手,由淺至深,比較符合初一學生的認知性,學生了解了概念后馬上讓他們開啟自己的智慧大門,并讓學生自己找到符合概念的條件,加深印象。穿插式的練習,讓學生能夠趁熱打鐵,更加熟練的掌握和理解一元一次方程的一些概念。在上課的過程中更重視的是學生的探索學習,以及數學“建模”能力的培養。為后面學習打下基礎。
3、在課堂的第二個環節中,通過實際問題的'引入,讓學生動起腦來,階梯型問題的設置使得一些后進生也投入到課堂中來,體現了差異性的教學。在學生慢慢列出方程的同時其實也培養了他們的邏輯思維能力,也體會到了列方程它與算式相比較之下的優點,合作式的學生活動增進了學生的合作交流能力,我并通過一些激勵性的話語激發學生參與數學的興趣,在列完方程的最后讓學生歸納出列方程解應用題的基本步驟。使學生加深對知識的掌握也培養了他們的語言組織能力以及學會標準的數學用語。
二、從教學方法反思。
本節課本著“尊重差異”為基礎,先“引導發現”,后“講評點撥”,所以再講解前面概念的時候,我稍稍放慢速度讓后進生聽的明白,因為方程是解應用題的基礎,抓住基礎知識再去發展他們的邏輯思維能力對后進生是十分重要的。
三、從學生反饋反思。
這堂課學生能積極思考,認真學習,課后作業都能及時完成。作業質量較好,但是對于稍難點的實際問題得列式還是有一些問題。在應用題的列式方面是所有學生學習的一個難點,這是我后面課堂要注意的地方:如何去教會學生找到數量關系去列方程。
人教版七年級數學教案設計(實用18篇)篇十
1知識與技能:
使學生理解和掌握整十數除整十數、幾百幾十數(商一位數)的口算方法,能正確地進行計算。
2過程與方法:
通過觀察、操作、討論的活動,使學生經歷探究口算方法的全過程。
3情感態度與價值觀:
讓學生感受數學與生活的聯系,培養學生用數學知識解決簡單實際問題的能力。
教學重難點。
1教學重點:
掌握用整十數除的口算方法。
2教學難點:
理解用整十數除的口算算理。
教學工具。
多媒體設備。
教學過程。
1復習引入。
口算。
20×3=7×50=6×3=。
20×5=4×9=8×60=。
24÷6=8÷2=12÷3=。
42÷6=90÷3=3000÷5=。
2新知探究。
1.教學例1。
有80面彩旗,每班分20面,可以分給幾個班?
(1)提出問題,尋找解決問題的方法。
師:從中你能獲取什么數學信息?
師:怎樣解決這個問題?
(2)列式80÷20。
(3)學生獨立探索口算的方法。
師:怎樣算80÷20呢,請同學們先自己想一想、算一算,再說給同桌聽一聽。
學生匯報:
預設學生可能會有以下兩種口算方法:
a.因為20×4=80,所以80÷20=4這是想乘算除。
b.因為8÷2=4,所以80÷20=4這是根據計數單位的組成。
為什么可以不看這個“0”?(80÷20可以想“8個十里面有幾個二十?”)。
這樣我們就把除數是整十數的轉化為我們已經學過的表內除法。
(4)師小結:
同學們有的用乘法算除法的,也有用表內除法來想的,都很好,那么你喜歡哪種方法呢?
把你喜歡的方法說給同桌聽。
(5)檢查正誤。
師:我們分的結果對不對?請同學們看屏幕(課件演示分的結果)。
(6)用剛學會的方法再次口算,并與同桌交流你的想法。
40÷2020÷1060÷3090÷30。
(7)探究估算的方法。
出示:83÷20≈80÷19≈。
師:你能知道題目要求我們做什么嗎?你怎么知道的?你是怎樣計算的?和同學們交流一下。
生:求83除以20、80除以19大約得多少,從題目中的約等號看出不用精確計算。
師:誰想把你的方法跟大家說一說。
預設:83接近于80,80除以20等于4,所以83除以20約等于4。
19接近于20,80除以20等于4,所以80除以19約等于4。
2.教學例2。
(1)創設情境引出問題。
師:誰會解決這個問題?
150÷50。
(2)小組討論口算方法。
(3)你是怎么這樣快就算出的呢?
a.因為15÷5=3,所以150÷50=3。
b.因為3個50是150,所以150÷50=3。
這一題跟剛才分彩旗的口算方法有不同嗎?
都是運用想乘算除和表內除法這兩種方法來口算的。
師:在解決分彩旗和剛才的問題中,我們共同探討了除法的口算方法,(板題:口算除法)口算時,可以用自己喜歡的方法來口算。
口算練習:150÷30240÷80300÷50540÷90。
3.估算。
(1)探計估算的方法。
師:你能知道題目要求我們做什么嗎?
你能估嗎?請先估算,再把你的估算方法與同伴交流,看看能否互相借鑒。
(2)誰想把你的方法跟大家說一說。
(3)總結方法:把被除數和除數都看作與原數比較接近的整十數再用口算方法算。
(4)判斷估算是否正確:122÷60=2349÷50≈8為什么不正確?
3鞏固提升。
1.獨立口算。
觀察每道題,怎樣很快說出下面除法算式的商?
如果估算的話把誰估成多少。
2.算一算、說一說。
(1)除數不變,被除數乘幾,商也乘幾。
(2)被除數不變,除數乘幾,商反而除以幾。
3.解決問題。
(1)一共要寄240本書,每包40本。要捆多少包?
你能找到什么條件、問題。你會解決嗎?
240÷40=6(包)。
答:要捆6包。
(2)這個小朋友也是一個愛看書的好孩子,她在看一本故事書。
出示條件:一共有120個小故事,每天看1個故事。
問題:看完這本書大約需要幾個月?
問:要求看完這本書大約需要幾個月?必須要知道哪些條件,你會求嗎?
120÷30=4(個)。
答:看完這本書大約需要4個月。
課后小結。
這節課你有什么收獲?還有什么問題?
本節課學習了整十數除整十數、幾百幾十數(商一位數)的口算方法,能正確地進行計算。
板書。
口算除法。
有80面彩旗,每班分20面,可以分給幾個班?
80÷20=。
文檔為doc格式。
人教版七年級數學教案設計(實用18篇)篇十一
這節課的內容是一元一次方程第一課時。課后,我對本節課從四方面進行了如下反思:
一:對選擇引例的反思。
在小學學生已接觸過方程,但沒有過多的研究。而本節課是一元一次方程的開篇課,它起著承上啟下的作用,通過這節課既要讓學生認識到方程是更方便、更有力的數學工具,又要讓學生體驗到從算術方法到代數方法是數學的進步,這些目標的實現談何容易!課本上的例題雖然能很好的體現方程的優越性,但難度較高。學生很少有利用方程解應用題的經歷,能否理解和接受?斟酌再三,還是放到后面再講。那么哪個題既簡單又能明顯地承載著從算術到方程的進步呢?幾乎翻閱了所有的有關資料,無獨有偶,在新課標教案126頁的一道數學名題“啊哈,它的全部,它的一半,其和等于19。”讓我眼前一亮,我為自己好不容易找到一個例題而興奮不已,立刻拿去和我們數學組經驗豐富的老教師交流一下我的想法,他們覺得這個例子倒挺好的,可是也提出了一個讓我深思的問題,這個題不是能夠很好地體現出從算術到方程的進步,因為題很簡單,方程的優越性體現的不夠明顯。剛才的新奇和興奮迅速冷卻了下來,陳老師的一句話徹底點醒了我,如果實在找不到合適的例題,不妨就用這個題,通過這個題從語言和方法上突破它,可以先讓學生感知方程的優越性,后面學習中再不斷地滲透方程的優越性。聽完陳老師的一席見解,我頓時豁然開朗,增加了以這個題作為引例的信心。事實證明,這個引例既富有創新又能激發學生的興趣,既符合學生的已有經驗和知識水平,又符合學生的認知規律。
二:對選題的反思。
我在備課中【活動3】最初選用的題是:
修改后的題是:
判斷下列各式是方程的有:
(1)(2)(3)(4)(5)。
考慮到學生初對方程概念的研究,不在數字上人為的設置障礙,因為是否是方程與數字的大小根本無關,于是把數字全部統一成了6、2、8三個數,利于學生從未知數和等號的角度進一步理解方程的概念。最初選用的題數字太多,顯得題很多且條理性不強,容易分散學生對概念本質的把握。改進后的題目更利于學生觀察方程的特征,從而更深刻地掌握概念的本質。需要特別說明的是,如果說前5個小題是為了讓學生抓住方程的兩個要點,那么后3個小題則是對概念本質的提升,即:是否是方程與未知數所在的位置、未知數的個數、未知數的次數等均無關。
三:對課堂實踐的反思。
本節課的設計思路:首先以“名題欣賞”導入,引入概念,通過四組練習讓學生深刻理解方程和一元一次方程的概念,最后由學生自己歸納小結。
當環節進行到【活動3】時,我讓學生寫出一個或幾個方程,在給學生判斷點評時,我發現學生在黑板上寫的全部都是未知數在等號左邊的方程,這時我突然意識到學生在模仿我前面呈現的方程,不禁暗自責怪自己考慮不周,怎么沒出一個等號兩邊都含有未知數的方程呢?它給我敲響了一個警鐘。正當我想寫一個等號兩邊都含有未知數的方程來彌補設計上的不足時,我忽然發現最后一排的一位男生已經高高地舉起了手,他提出問題:“老師:等號兩邊都含有未知數的式子是不是方程,例如:2y-1=3y”?我為有學生能提出這樣的問題而感到慶幸,一是因為它及時彌補了我備課中的不足;二是由學生提出問題要比我提出問題更有價值。這可以反映出該生善于思考,同時也反映出了學生真實的疑惑。為了提高學生的探究能力,我并沒有急于解釋,而是把問題拋給學生,讓學生來解決。我立刻提出:“誰能解決這位同學提出的`問題呢?”這時我看到后面幾位學生已經高高地舉起了手。我隨機點了一名學生,這位同學回答到:“判斷一個式子是不是方程只要看是否含有未知數和等號就ok了,與未知數的位置無關!”他精彩的回答引起聽課教師一陣喝彩!我也頓時驚喜萬分,他說的太好了,不管是語言表達還是準確性上都無可挑剔。我為敢于給學生這樣一個機會又一次感到慶幸;通過這個同學精彩的回答,我深深地感受到:“教師給學生一個機會,學生就會還你一個驚喜。”
四:教后整體反思。
成功之處:
1.引例、練習題的選擇都很恰當。
2.思路清晰,重點突出,注意到了學生的自主探索,節奏把握較好。
3.數學文化的滲透比較自然。
4.“寫一個或幾個一元一次方程”此環節的設計體現了從理論到實踐的過程,使學生的能力得到提升,學習效果得到落實。
5.語言簡練,教態大方,師生互動比較熱烈,充分調動了學生的積極性。
6.板書設計較為合理。本節課的主要內容都以提煉的方式呈現出來。
不足之處:
1.在處理三道實際背景題時留給學生的思考時間偏少,顯得倉促。
2.在后面兩組題環節之間的過渡語言不是很自然。
3.授課語言仍需加強錘煉。
這節課的準備和每個環節的設計我頗費了一些心思,上完課之后總的感覺是達到了我預期的目標。非常感謝評委組的老師們中懇的建議,以及同行們的肯定,這讓我受益匪淺。在今后的教學中,我將揚長避短,力爭做的更好!
人教版七年級數學教案設計(實用18篇)篇十二
1、大于0的數叫做正數(positivenumber)。
2、在正數前面加上負號“-”的數叫做負數(negativenumber)。
3、整數和分數統稱為有理數(rationalnumber)。
4、人們通常用一條直線上的點表示數,這條直線叫做數軸(numberaxis)。
5、在直線上任取一個點表示數0,這個點叫做原點(origin)。
6、一般的,數軸上表示數a的點與原點的距離叫做數a的絕對值(absolutevalue)。
7、由絕對值的定義可知:一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。
8、正數大于0,0大于負數,正數大于負數。
9、兩個負數,絕對值大的反而小。
10、有理數加法法則。
(1)同號兩數相加,取相同的符號,并把絕對值相加。
(2)絕對值不相等的異號兩數相加,取絕對值較大的加數的負號,并用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0。
(3)一個數同0相加,仍得這個數。
11、有理數的加法中,兩個數相加,交換交換加數的位置,和不變。
12、有理數的加法中,三個數相加,先把前兩個數相加,或者先把后兩個數相加,和不變。
13、有理數減法法則。
減去一個數,等于加上這個數的相反數。
14、有理數乘法法則。
兩數相乘,同號得正,異號得負,并把絕對值向乘。
任何數同0相乘,都得0。
15、有理數中仍然有:乘積是1的兩個數互為倒數。
16、一般的,有理數乘法中,兩個數相乘,交換因數的位置,積相等。
17、三個數相乘,先把前兩個數相乘,或者先把后兩個數相乘,積相等。
18、一般地,一個數同兩個數的和相乘,等于把這個數分別同這兩個數相乘,再把積相加。
19、有理數除法法則。
除以一個不等于0的數,等于乘這個數的倒數。
20、兩數相除,同號得正,異號得負,并把絕對值相除。0除以任何一個不等于0的數,都得0。
21、求n個相同因數的積的運算,叫做乘方,乘方的結果叫做冪(power)。在an中,a叫做底數(basenumber),n叫做指數(exponeht)。
22、根據有理數的乘法法則可以得出。
負數的奇次冪是負數,負數的偶次冪是正數。
顯然,正數的任何次冪都是正數,0的任何次冪都是0。
23、做有理數混合運算時,應注意以下運算順序:
(1)先乘方,再乘除,最后加減;。
(2)同級運算,從左到右進行;。
(3)如有括號,先做括號內的運算,按小括號、中括號、大括號依次進行。
24、把一個大于10數表示成a×10n的形式(其中a是整數數位只有一位的數,n是正整數),使用的是科學計數法。
25、接近實際數字,但是與實際數字還是有差別,這個數是一個近似數(approximatenumber)。
26、從一個數的左邊的第一個非0數字起,到末尾數字止,所有的數字都是這個數的有效數字(significantdigit)。
短時間提高數學成績的方法。
1、查查在知識方面還能做那些努力。關鍵的是做好知識的準備,考前要檢查自己在初中學習的數學知識是否還有漏洞,是否有遺忘或易混的地方;其次是對解題常犯錯誤的準備,再看一下自己的錯誤筆記,如果你沒有錯題本,那可以把以前的做過的卷子找出來。翻看修改的部分,那就是出錯的地方、爭取在答卷時,不犯或少犯過去曾犯過的錯誤。也就是錯誤不二犯。
2、一定要對自己、對未來充滿信心,心態問題是影響考試的最重要的原因。走進考場就要有舍我其誰的霸氣。要信心十足,要相信自己已經讀了一千天的初中,進行了三百多天的復習,做了三千至四千道初中數學題,養兵千日,用兵一時,現在是收獲的時候,自己會取得好成績的。
3、看完書后,把課本放起來,做習題,通過做習題來再一次檢查自己哪些地方做的不夠好,如果碰到不會的地方,可以再看課本,這樣以來,相信會給你留下深刻的印象。
數學學習方法。
1、基礎很重要。
是不是感覺數學都能考滿分的同學,連書都不用看,其實數學學霸更重視基礎。,數學公式,幾何圖形的性質,函數的性質等,都是數學學習的基礎,甚至可以說基礎的好壞,直接決定中考數學成績的高低。
李現良表示,班里某位同學來找自己講題,其實題目并不難,但這位同學就是因為一些最基礎的知識沒有掌握透徹,導致做題的時候沒有思路。基礎不牢、地動山搖,一個小小的知識漏洞可能導致你在整一個題中都沒有思路,非常危險。
2、錯題本很重要。
在所有科目中,數學這個科目最重要錯題本學習法。李現良同學也特別提倡大家整理錯題,李現良對于錯題本有一些小竅門,那就是平時如果堅持整理錯題,最終會導致自己錯題本很多很厚,我們可以定期復習,對于一些徹底掌握的,可以做個標記,以后就不用再次復習,這樣錯題本使用起來就會效率更高。
3、做題要多反思。
數學學習要大量做題去鞏固,但做題不要只講究數量,更要講究質量,遇到經典題,綜合性高的題目時,每道題寫完解答過程后,需要進行分析和反思,多問幾個為什么,這樣才能把題真正做透。
4、把數學知識形成體系。
數學學霸李現良表示,課本上的知識都是零散的,建議大家自己畫思維導圖把知識串起來,畫思維導圖的過程,就是不斷理解,讓知識變成結構的過程。
人教版七年級數學教案設計(實用18篇)篇十三
比較正數和負數的大小。
1、借助數軸初步學會比較正數、0和負數之間的大小。
2、初步體會數軸上數的順序,完成對數的結構的初步構建。
負數與負數的比較。
一、復習:
1、讀數,指出哪些是正數,哪些是負數?
—85。6+0。9—+0—82。
2、如果+20%表示增加20%,那么—6%表示。
二、新授:
(一)教學例3:
1、怎樣在數軸上表示數?(1、2、3、4、5、6、7)。
2、出示例3:
(1)提問你能在一條直線上表示他們運動后的情況嗎?
(2)讓學生確定好起點(原點)、方向和單位長度。學生畫完交流。
(3)教師在黑板上話好直線,在相應的點上用小圖片代表大樹和學生,在問怎樣用數表示這些學生和大樹的相對位置關系?(讓學生把直線上的點和正負數對應起來。
(4)學生回答,教師在相應點的下方標出對應的數,再讓學生說說直線上其他幾個點代表的數,讓學生對數軸上的點表示的正負數形成相對完整的認識。
(5)總結:我們可以像這樣在直線上表示出正數、0和負數,像這樣的直線我們叫數軸。
(6)引導學生觀察:
a、從0起往右依次是?從0起往左依次是?你發現什么規律?
(7)練習:做一做的第1、2題。
(二)教學例4:
1、出示未來一周的天氣情況,讓學生把未來一周每天的最低氣溫在數軸上表示出來,并比較他們的大小。
2、學生交流比較的方法。
3、通過小精靈的話,引出利用數軸比較數的大小規定:在數軸上,從左到右的順序就是數從小到大的順序。
4、再讓學生進行比較,利用學生的具體比較來說明“—8在—6的左邊,所以—8〈—6”
5、再通過讓另一學生比較“8〉6,但是—8〈—6”,使學生初步體會兩負數比較大小時,絕對值大的負數反而小。
6、總結:負數比0小,所有的負數都在0的'左邊,也就是負數都比0小,而正數比0大,負數比正數小。
7、練習:做一做第3題。
三、鞏固練習。
1、練習一第4、5題。
2、練習一第6題。
3、某日傍晚,黃山的氣溫由上午的零上2攝氏度下降了7攝氏度,這天傍晚黃山的氣溫是攝氏度。
四、全課總結。
(1)在數軸上,從左到右的順序就是數從小到大的順序。
(2)負數比0小,正數比0大,負數比正數小。
第二課教學反思:
許多教師認為“負數”這個單元的內容很簡單,不需要花過多精力學生就能基本能掌握。可如果深入鉆研教材,其實會發現還有不少值得挖掘的內容可以向學生補充介紹。
例3——兩個不同層面的拓展:
1、在數軸上表示數要求的拓展。
數軸除了可以表示整數,還可以表示小數和分數。教材例3只表示出正、負整數,最后一個自然段要求學生表示出—1。5。建議此處教師補充要求學生表示出“+1。5”的位置,因為這樣便于對比發現兩個數離原點的距離相等,只不過分別在0的左右兩端,滲透+1。5和—1。5絕對值相等。同時,還應補充在數軸上表示分數,如—1/3、—3/2等,提升學生數形結合能力,為例4的教學打下夯實的基礎。
2、滲透負數加減法。
教材中所呈現的數軸可以充分加以應用,如可補充提問:在“—2”位置的同學如果接著向西走1米,將會到達數軸什么位置?如果是向東走1米呢?如果他從“—2”的位置要走到“—4”,應該如何運動?如果他想從“—2”的位置到達“+3”,又該如何運動?其實,這些問題就是解決—2—1;2+1;—4—(—2);3—(—2)等于幾,這樣的設計對于學生初中進一步學習代數知識是極為有利的。
例4——薄書讀厚、厚書讀薄。
薄書讀厚——負數大小比較的三種類型(正數和負數、0和負數、負數和負數)。
例4教材只提出一個大的問題“比較它們的大小”,這些數的大小比較可以分為幾類?每類比較又有什么方法,教材則沒有明確標明。所以教學中,當學生明確數軸從左到右的順序就是數從小到大的順序基礎上,我還挖掘了三種不同類型,一一請學生介紹比較方法,將薄書讀厚。
將厚書讀薄——無論哪種類型,比較方法萬變不離其宗。
無論哪種比較方法,最終都可回歸到“數軸上左邊的數比右邊的數小。”即使有學生在比較—8和—6大小時是用“86,所以—8—6”來闡述其原因,其實也與數軸相關。因為當絕對值越大時,表示離原點的距離越遠,那么在數軸上表示的點也就在原點左邊越遠,數也就越小。所以,抓住精髓就能以不變應萬變。
在此,我還補充了—3/7和—2/5比較大小的練習,提升學生靈活應用知識解決實際問題的能力。
人教版七年級數學教案設計(實用18篇)篇十四
1.小明用天平測量物體的質量(如下圖),已知每個小砝碼的質量為1克,此時天平處于平衡狀態.若設大砝碼的質量為x克.
考查說明:本題主要考查等式基本性質1.
答案與解析:根據等式基本性質1:等式兩邊同時加或減去同一個數或式子,結果仍為等式.
2.方程3y=。
兩邊都除以3得y=1。
改正:________________________________________________.
考查說明:本題主要考查等式基本性質2并熟練運用.
答案與解析:得y=。
兩邊同時除以3時,右邊也要除以3,不是乘以3。
3.當x=時,60-5x=0.
考查說明:本題主要考查利用等式兩條基本性質來解簡單方程.
答案與解析:12.由原方程和等式性質1得5x=60,再由等式性質2,兩邊同除以5,得x=12.
4.方程的解是(36,48中選填一個)。
考查說明:本題考查的知識點是方程的解的概念,使得等號成立即可.
答案與解析:36.方程的解使等式兩邊相等,把兩個數代入驗算即可.
5.一年三班55人,一年八班29人,因植樹需要從三班中抽出x人到八班,使得兩班人數相同,則根據題意可列方程為_____________.
考查說明:本題主要考查根據題意找等量關系,從而列出方程.
答案與解析:55-x=29+x.等量關系為:抽調后,三班人數=八班人數,關鍵要理解三班少了x人的同時,八班多了x人.
二、選擇題。
6.下列方程中,是一元一次方程的是()。
a、
b、
c、
d、
考查說明:本題主要考查一元一次方程的概念.
答案與解析:a.a和b都需要化簡后再判斷,c明顯是二元的,d分母中含未知數,不是整式方程.
7.根據下列條件能列出方程的是()。
a.一個數的'與另一個數的的和。
b.與1的差的4倍是8。
c.和的60%。
d.甲的3倍與乙的差的2倍。
考查說明:本題考查的知識點是方程與代數式的區別.
答案與解析:b.其余幾個答案都不能列出等號.
三、解答題。
考查說明:本題考查的知識點是列一元一次方程解應用題,并會利用等式性質解簡單的一元一次方程.本題等量關系為:教師票價+學生票價=910.
答案與解析:設:學生有x人,根據題意。
列出方程得70+70x×=910,
解方程得70x×=840,
即35x=840,
所以x=24.
人教版七年級數學教案設計(實用18篇)篇十五
幾何圖形大小:長度、面積、體積等。
位置:相交、垂直、平行等。
2幾何體也簡稱體。包圍著體的是面。
3常見的立體圖形:柱體、椎體、球體等各部分不都在一個平面內。
4平面圖形:在一個平面內的圖形就是平面圖形。
5展開圖:識記一些常用的展開圖。圓柱/圓錐的側面展開圖;。
6點線面體:是組成幾何圖形的基本元素。
7直線、射線、線段。
線段公理:兩點的所有連線中,線段做短(兩點之間,線段最短)。
連接兩點間的線段的長度,叫做這兩點的距離。
經過兩點有一條直線,并且只有一條直線。兩點確定一條直線。
8角。
9角的比較與運算。
角的平分線:從一個角的頂點出發,把這個角分成相等的兩個角的射線,叫做這個角的平分線。
余角:如果兩個角的和等于90度(直角),就說這兩個叫互為余角,即其中每一個角是另一個角的余角。
補角:如果兩個角的和等于180度(平角),就說這兩個叫互為補角,即其中每一個角是另一個角的補角。
性質:等角(同角)的補角相等。等角(同角)的余角相等。
人教版七年級數學教案設計(實用18篇)篇十六
1.教學目標、重點、難點.
教學目標:
(1)了解方程的解的概念.
(2)體驗對方程解的估算,會檢驗一個數是不是某個一元方程的解.
(3)滲透對應思想.
重點:方程解的意義,會檢驗一個數是不是一個一元方程的解.
難點:方程解的意義,會檢驗一個數是不是一個一元方程的解.
2.例、習題的意圖。
本節課重點是了解方程的解的意義.通過實際問題中對所列方程解的估算,了解什么是方程的解以及由于估算遇到了困難,產生尋求方程解法的需求,為后面的學習做好鋪墊.
例1是通過實際問題列出方程,根據(1)題未知數的取值范圍以及方程解的概念逐一代入方程來尋求方程的解,使學生親身體驗什么是方程的解,也為例2檢驗一個數值是不是方程的解做好鋪墊.對第(2)、(3)題再采用(1)題方法尋求方程的解已不容易,這又為后邊學習解方程奠定了積極的心理儲備.
例2是根據方程的解的意義,使學生會檢驗一個數值是不是方程的解,這一點應切實使學生掌握.
3.認知難點與突破方法。
難點是方程解的意義和檢驗一個數是不是一個一元方程的解.例1起著承上啟下的作用,在估算方程解的過程中,理解方程解的意義,學會檢驗一個數是不是一個一元方程的解.抓住關鍵字“等號左右兩邊相等”,檢驗一個數是不是一個一元方程的解,要分別計算方程的左右兩邊,若其值相等,則這個未知數是方程的解,若不相等,則不是方程的解.
二、新課引入。
復習:
1.什么是一元一次方程?
2.練習:當,,時,求式子的值.
答案:,,.
通過練習2強調求式子的值的一般步驟,其中易錯易混的地方,如代入的值是負數,應加上括號,數與數相乘時應恢復乘號,運算關系不能混淆等.
三、例題講解。
例1教材p69中例1。
分析:三個題目中的相等關系分別是:
(1)計算機已使用的時間+繼續使用的時間=規定的檢修時間.
(2)2(長+寬)=周長.
(3)女生人數—男生人數=.
分析:方程中等號左邊有未知數,估算的值代入方程應使等號左邊的值等于等號右邊的值2450,這樣的值才適合方程.由于表示月份,是正整數,不妨讓,,……分別代入方程算一算.
由計算結果可以看到,每一個的允許值都使代數式有一個確定的數值,為方便起見,可以列一個表格:
1234567…185021502300245026002750…從表中發現:當時,的值是,也就是,當時,方程中等號的左邊:.等號的右邊:2450.由此得到方程的左邊=右邊,就說叫做方程的解,也就是方程中,未知數的值為5.所以,方程的解就是.
教材p71中的小云朵,可以多選幾個情況來說明,以加強對方程解得意義的理解.
從表中你還能發現哪個方程的解?(引導學生得出)如方程的解是;方程的解是等等,使學生進一步體會方程解的概念.
方程解的意義:使方程中等號左右兩邊相等的未知數的值,叫做方程的解.
由于這兩個方程估算其解有一定的困難,數不整齊,或方程比較復雜,出現矛盾沖突,引導學生得出:學習解方程的方法十分必要.
怎樣檢驗一個數是否是方程的解呢?
人教版七年級數學教案設計(實用18篇)篇十七
用數學語言概括運算性質、
(三)解決辦法
增強對三種運算性質的理解,并運用對比的方法強化訓練以達到準確地區分、
一課時、
投影儀或電腦、自制膠片、
3、通過舉例來說明積的乘方性質應如何正確使用,師生共練以達到熟練掌握、
4、多種題型的設計,讓學生能從不同的角度全面準確地理解和運用該性質、
(一)明確目標
本節課重點學習積的乘方的運算性質及其較靈活地運用、
(二)整體感知
(三)教學過程
1、創設情境,復習導入
前面我們學習了同底數冪的乘法、冪的乘方這兩個寨的運算性質,請同學們通過完成一組練習,來回顧一下這兩個性質:
填空:
人教版七年級數學教案設計(實用18篇)篇十八
了解數軸的概念,能用數軸上的點準確地表示有理數。
【過程與方法】。
通過觀察與實際操作,理解有理數與數軸上的點的對應關系,體會數形結合的思想。
【情感、態度與價值觀】。
在數與形結合的過程中,體會數學學習的樂趣。
二、教學重難點。
【教學重點】。
數軸的三要素,用數軸上的點表示有理數。
【教學難點】。
數形結合的思想方法。
三、教學過程。
(一)引入新課。
提出問題:通過實例溫度計上數字的意義,引出數學中也有像溫度計一樣可以用來表示數的軸,它就是我們今天學習的數軸。
(二)探索新知。
學生活動:小組討論,用畫圖的形式表示東西向馬路上楊樹,柳樹,汽車站牌三者之間的關系:
學生活動:畫圖表示后提問。
提問2:“0”代表什么?數的符號的實際意義是什么?對照體溫計進行解答。
教師給出定義:在數學中,可以用一條直線上的點表示數,這條直線叫做數軸,它滿足:任取一個點表示數0,代表原點;通常規定直線上向右(或上)為正方向,從原點向左(或下)為負方向;選取合適的長度為單位長度。
提問3:你是如何理解數軸三要素的?
師生共同總結:“原點”是數軸的“基準”,表示0,是表示正數和負數的分界點,正方向是人為規定的,要依據實際問題選取合適的單位長度。
(三)課堂練習。
如圖,寫出數軸上點a,b,c,d,e表示的數。
(四)小結作業。
提問:今天有什么收獲?
引導學生回顧:數軸的三要素,用數軸表示數。
課后作業:
課后練習題第二題;思考:到原點距離相等的兩個點有什么特點?
四、板書設計。