教學(xué)計(jì)劃是指教師在一段時(shí)間內(nèi)對(duì)于教學(xué)內(nèi)容、教學(xué)活動(dòng)和教學(xué)目標(biāo)進(jìn)行規(guī)劃和安排的一種書面材料。教學(xué)計(jì)劃的質(zhì)量和效果關(guān)系到教學(xué)的成敗,需要教師充分的準(zhǔn)備和周密的安排。
一次函數(shù)與二元一次方程課教學(xué)設(shè)計(jì)大全(18篇)篇一
作為一位杰出的教職工,編寫教學(xué)設(shè)計(jì)是必不可少的,教學(xué)設(shè)計(jì)是把教學(xué)原理轉(zhuǎn)化為教學(xué)材料和教學(xué)活動(dòng)的計(jì)劃。那么優(yōu)秀的教學(xué)設(shè)計(jì)是什么樣的呢?以下是小編為大家收集的二元一次方程與一次函數(shù)教學(xué)設(shè)計(jì),歡迎閱讀與收藏。
2、能根據(jù)一次函數(shù)的圖像求二元一次方程組的近似值。
1、用作圖像法求二元一次方程組的近似值。
1、做圖像時(shí)要標(biāo)準(zhǔn)、精確,近似值才接近。
先自學(xué)課本,用心思考自主學(xué)習(xí)部分,努力獨(dú)立完成,再與其他同學(xué)討論未明白的內(nèi)容。課上展示,針對(duì)自己不明白問(wèn)題多聽(tīng)多問(wèn)。
問(wèn)題1、
(1)方程x+y=5的解有多少組?寫出其中的幾組解。
(3)在一次函數(shù)y=5—x的圖像上任取一點(diǎn),它們的坐標(biāo)適合方程x+y=5嗎?
(5)由以上的探究過(guò)程,你發(fā)現(xiàn)了什么?
問(wèn)題2、
(3)由以上探究過(guò)程,我們發(fā)現(xiàn)解二元一次方程組的方法除了加減消元法和代入消元法,還可以用法解方程組;我們還發(fā)現(xiàn)可以利用解二元一次方程組的方法求兩條直線交點(diǎn)的坐標(biāo)。
合作探究:
(1)用做圖像的方法解方程組。
(2)用解方程的方法求直線y=4—2x與直線y=2x—12交點(diǎn)。
一次函數(shù)與二元一次方程課教學(xué)設(shè)計(jì)大全(18篇)篇二
過(guò)程與方法。
(2)通過(guò)“做一做”引入例1,進(jìn)一步發(fā)展學(xué)生數(shù)形結(jié)合的意識(shí)和能力。
情感與態(tài)度。
(1)在探究二元一次方程和一次函數(shù)的對(duì)應(yīng)關(guān)系中,在體會(huì)近似解與準(zhǔn)確解中,培養(yǎng)學(xué)生勤于思考、精益求精的精神。
(2)在經(jīng)歷同一數(shù)學(xué)知識(shí)可用不同的數(shù)學(xué)方法解決的過(guò)程中,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和變式能力。
教學(xué)重點(diǎn)。
教學(xué)難點(diǎn)。
數(shù)形結(jié)合和數(shù)學(xué)轉(zhuǎn)化的思想意識(shí)。
教學(xué)準(zhǔn)備。
教具:多媒體課件、三角板。
學(xué)具:鉛筆、直尺、練習(xí)本、坐標(biāo)紙。
教學(xué)過(guò)程。
第一環(huán)節(jié):設(shè)置問(wèn)題情境,啟發(fā)引導(dǎo)(5分鐘,學(xué)生回答問(wèn)題回顧知識(shí))。
內(nèi)容:
1.方程x+y=5的解有多少個(gè)?是這個(gè)方程的解嗎?
2.點(diǎn)(0,5),(5,0),(2,3)在一次函數(shù)y=的圖像上嗎?
3.在一次函數(shù)y=的圖像上任取一點(diǎn),它的坐標(biāo)適合方程x+y=5嗎?
4.以方程x+y=5的解為坐標(biāo)的所有點(diǎn)組成的圖像與一次函數(shù)y=的圖像相同嗎?
由此得到本節(jié)課的第一個(gè)知識(shí)點(diǎn):
(2)一次函數(shù)圖像上的點(diǎn)的坐標(biāo)都適合相應(yīng)的二元一次方程。
第二環(huán)節(jié)自主探索方程組的解與圖像之間的關(guān)系(10分鐘,教師引導(dǎo)學(xué)生解決)。
內(nèi)容:
1.解方程組。
2.上述方程移項(xiàng)變形轉(zhuǎn)化為兩個(gè)一次函數(shù)y=和y=2x,在同一直角坐標(biāo)系內(nèi)分別作出這兩個(gè)函數(shù)的圖像。
(1)求二元一次方程組的解可以轉(zhuǎn)化為求兩條直線的交點(diǎn)的橫縱坐標(biāo);
(2)求兩條直線的交點(diǎn)坐標(biāo)可以轉(zhuǎn)化為求這兩條直線對(duì)應(yīng)的函數(shù)表達(dá)式聯(lián)立的二元一次方程組的解。
(3)解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種。
注意:利用圖像法求二元一次方程組的解是近似解,要得到準(zhǔn)確解,一般還是用代入消元法和加減消元法解方程組。
第三環(huán)節(jié)典型例題(10分鐘,學(xué)生獨(dú)立解決)。
探究方程與函數(shù)的相互轉(zhuǎn)化。
內(nèi)容:例1用作圖像的方法解方程組。
例2如圖,直線與的交點(diǎn)坐標(biāo)是。
第四環(huán)節(jié)反饋練習(xí)(10分鐘,學(xué)生解決全班交流)。
內(nèi)容:
1.已知一次函數(shù)與的圖像的交點(diǎn)為,則。
2.已知一次函數(shù)與的圖像都經(jīng)過(guò)點(diǎn)a(—2,0),且與軸分別交于b,c兩點(diǎn),則的面積為()。
(a)4(b)5(c)6(d)7。
3.求兩條直線與和軸所圍成的三角形面積。
4.如圖,兩條直線與的交點(diǎn)坐標(biāo)可以看作哪個(gè)方程組的解?
第五環(huán)節(jié)課堂小結(jié)(5分鐘,師生共同總結(jié))。
內(nèi)容:以“問(wèn)題串”的形式,要求學(xué)生自主總結(jié)有關(guān)知識(shí)、方法:
(2)一次函數(shù)圖像上的點(diǎn)的坐標(biāo)都適合相應(yīng)的二元一次方程。
2.方程組和對(duì)應(yīng)的兩條直線的關(guān)系:
(1)方程組的解是對(duì)應(yīng)的兩條直線的交點(diǎn)坐標(biāo);
(2)兩條直線的交點(diǎn)坐標(biāo)是對(duì)應(yīng)的方程組的解;
(1)代入消元法;
(2)加減消元法;
(3)圖像法。要強(qiáng)調(diào)的是由于作圖的不準(zhǔn)確性,由圖像法求得的解是近似解。
第六環(huán)節(jié)作業(yè)布置。
習(xí)題7.7a組(優(yōu)等生)1、2、3b組(中等生)1、2c組1、2。
一次函數(shù)與二元一次方程課教學(xué)設(shè)計(jì)大全(18篇)篇三
2、了解二元一次方程和二元一次方程組的解并會(huì)檢驗(yàn)一對(duì)數(shù)值是不是二元一次方程(組)的解。
重點(diǎn):二元一次方程(組)的含義及檢驗(yàn)一對(duì)數(shù)是否是某個(gè)二元一次方程(組)的解。
1、知識(shí)回顧:
(1)方程的概念;
(2)一元一次方程的概念;
(3)什么是方程的解?
(4)一元一次方程的解如何表示?
2、合作學(xué)習(xí):
如果設(shè)需要票額為6角的郵票x張,需要票額為8角的郵票y張,你能列出方程嗎?
一次函數(shù)與二元一次方程課教學(xué)設(shè)計(jì)大全(18篇)篇四
知識(shí)目標(biāo):了解二元一次方程、二元一次方程組及其解等有關(guān)概念,并會(huì)判斷一組數(shù)是不是某個(gè)二元一次方程組的解。
能力目標(biāo):通過(guò)討論和練習(xí),進(jìn)一步培養(yǎng)學(xué)生的觀察、比較、分析的能力。
情感目標(biāo):通過(guò)對(duì)實(shí)際問(wèn)題的分析,使學(xué)生進(jìn)一步體會(huì)方程是刻畫現(xiàn)實(shí)世界的有效數(shù)學(xué)模型,培養(yǎng)學(xué)生良好的數(shù)學(xué)應(yīng)用意識(shí)。
判斷一組數(shù)是不是某個(gè)二元一次方程組的解,培養(yǎng)學(xué)生良好的數(shù)學(xué)應(yīng)用意識(shí)。
一、引入、實(shí)物投影。
2、請(qǐng)每個(gè)學(xué)習(xí)小組討論(討論2分鐘,然后發(fā)言)。
這個(gè)問(wèn)題由于涉及到老牛和小馬的馱包裹的兩個(gè)未知數(shù),我們?cè)O(shè)老牛馱x個(gè)包裹,小馬馱y個(gè)包裹,老牛的包裹數(shù)比小馬多2個(gè),由此得方程x-y=2,若老牛從小馬背上拿來(lái)1個(gè)包裹,這時(shí)老牛的包裹是小馬的2倍,得方程:x+1=2(y-1)。
師:同學(xué)們能用方程的。方法來(lái)發(fā)現(xiàn)、解決問(wèn)題這很好,上面所列方程有幾個(gè)未知數(shù)?含未知數(shù)的項(xiàng)的次數(shù)是多少?(含有兩個(gè)未知數(shù),并且所含未知數(shù)項(xiàng)的次數(shù)是1)。
師:含有兩個(gè)未知數(shù),并且含未知數(shù)項(xiàng)的次數(shù)都是1的方程叫做二元一次方程。
一次函數(shù)與二元一次方程課教學(xué)設(shè)計(jì)大全(18篇)篇五
本節(jié)課是在學(xué)生已經(jīng)探究過(guò)一次函數(shù)、一元一次方程及一元一次不等式的聯(lián)系的基礎(chǔ)上進(jìn)行的學(xué)習(xí)。本節(jié)教學(xué)內(nèi)容是《一次函數(shù)與一元二次方程(組)》,“一個(gè)二元一次方程對(duì)應(yīng)一個(gè)一次函數(shù),一般地一個(gè)二元一次方程組對(duì)應(yīng)兩個(gè)一次函數(shù),因而也對(duì)應(yīng)兩條直線。如果一個(gè)二元一次方程組有唯一的解,那么這個(gè)解就是方程組對(duì)應(yīng)的兩條直線的交點(diǎn)的坐標(biāo)”。通過(guò)本節(jié)課的學(xué)習(xí),讓學(xué)生能從函數(shù)的角度動(dòng)態(tài)地分析方程(組),提高認(rèn)識(shí)問(wèn)題的水平。
本節(jié)課的引入。我通過(guò)一個(gè)一次函數(shù)形式問(wèn)題提問(wèn),學(xué)生看出既是一次函數(shù),也是二元一次方程,由此創(chuàng)設(shè)情境,引出一次函數(shù)與方程有必然的關(guān)系,使學(xué)生主動(dòng)投入到一次函數(shù)與二元一次方程(組)關(guān)系的探索活動(dòng)中;緊接著,用一連串的問(wèn)題引導(dǎo)學(xué)生自主探索、合作交流,從數(shù)和形兩個(gè)角度認(rèn)識(shí)它們的關(guān)系,使學(xué)生真正掌握本節(jié)課的重點(diǎn)知識(shí)。
在探究過(guò)程中,我把學(xué)生分為一個(gè)函數(shù)組一個(gè)方程組,使學(xué)生能身臨其境感受知識(shí),并及時(shí)的進(jìn)行團(tuán)結(jié)合作教育,把德育教育滲透在教學(xué)中。在探究中,我把握自己是組織者、引導(dǎo)者和合作者的身份,及時(shí)引導(dǎo)學(xué)生進(jìn)行知識(shí)探究。但在實(shí)際操作過(guò)程中還是把握的不夠好,沒(méi)有很好的起到引導(dǎo)者的作用,缺乏情感性的鼓勵(lì),沒(méi)有使大多數(shù)學(xué)生能完全積極融入到的知識(shí)的探討與學(xué)習(xí)中。
本節(jié)的圖象解法需要迅速畫出圖象,利用圖象解決問(wèn)題。而我的失誤主要發(fā)生在畫圖象上。大部分學(xué)生不能迅速畫出圖象,并找準(zhǔn)交點(diǎn),這就使他們理解本節(jié)知識(shí)有了困難。
為了培養(yǎng)學(xué)生的發(fā)散思維和規(guī)范解題的習(xí)慣,我引導(dǎo)學(xué)生將“上網(wǎng)收費(fèi)”問(wèn)題延伸為拓展應(yīng)用題,根據(jù)前面的例題教學(xué),設(shè)置了兩個(gè)小問(wèn)題:
(1)上網(wǎng)時(shí)間為多少時(shí),按方式a比較劃算?
(2)上網(wǎng)時(shí)間為多少時(shí),按方式b比較劃算?
前后呼應(yīng),使學(xué)生有效地理解本節(jié)課的難點(diǎn)。但在此題的探討過(guò)程中,我做的不夠好,沒(méi)有給學(xué)生充分思考的時(shí)間及學(xué)生探討解決問(wèn)題的方法,有點(diǎn)操之過(guò)急,而且我當(dāng)時(shí)也沒(méi)有采取補(bǔ)救措施,這是我的失誤,也是這節(jié)課的失敗之處。
一次失誤也反映了一位老師駕馭課題的能力,今后,在我的課堂教學(xué)中要注重培養(yǎng)這種能力,關(guān)注細(xì)節(jié),完善課堂和各個(gè)環(huán)節(jié),不留遺憾,提高教育教學(xué)質(zhì)量。
一次函數(shù)與二元一次方程課教學(xué)設(shè)計(jì)大全(18篇)篇六
(2)通過(guò)“做一做”引入例1,進(jìn)一步發(fā)展學(xué)生數(shù)形結(jié)合的意識(shí)和能力。
(1)在探究二元一次方程和一次函數(shù)的對(duì)應(yīng)關(guān)系中,在體會(huì)近似解與準(zhǔn)確解中,培養(yǎng)學(xué)生勤于思考、精益求精的精神。
(2)在經(jīng)歷同一數(shù)學(xué)知識(shí)可用不同的數(shù)學(xué)方法解決的過(guò)程中,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和變式能力。
(2)二元一次方程組和對(duì)應(yīng)的兩條直線的關(guān)系。
數(shù)形結(jié)合和數(shù)學(xué)轉(zhuǎn)化的思想意識(shí)。
教具:多媒體課件、三角板。
學(xué)具:鉛筆、直尺、練習(xí)本、坐標(biāo)紙。
第一環(huán)節(jié):設(shè)置問(wèn)題情境,啟發(fā)引導(dǎo)(5分鐘,學(xué)生回答問(wèn)題回顧知識(shí))。
內(nèi)容:
1.方程x+y=5的解有多少個(gè)?是這個(gè)方程的解嗎?
2.點(diǎn)(0,5),(5,0),(2,3)在一次函數(shù)y=的圖像上嗎?
3.在一次函數(shù)y=的圖像上任取一點(diǎn),它的坐標(biāo)適合方程x+y=5嗎?
4.以方程x+y=5的解為坐標(biāo)的所有點(diǎn)組成的圖像與一次函數(shù)y=的圖像相同嗎?
由此得到本節(jié)課的第一個(gè)知識(shí)點(diǎn):
(1)以二元一次方程的解為坐標(biāo)的點(diǎn)都在相應(yīng)的函數(shù)圖像上;
第二環(huán)節(jié)自主探索方程組的解與圖像之間的關(guān)系(10分鐘,教師引導(dǎo)學(xué)生解決)。
內(nèi)容:
1.解方程組。
2.上述方程移項(xiàng)變形轉(zhuǎn)化為兩個(gè)一次函數(shù)y=和y=2x,在同一直角坐標(biāo)系內(nèi)分別作出這兩個(gè)函數(shù)的圖像。
(1)求二元一次方程組的解可以轉(zhuǎn)化為求兩條直線的交點(diǎn)的橫縱坐標(biāo);
(2)求兩條直線的交點(diǎn)坐標(biāo)可以轉(zhuǎn)化為求這兩條直線對(duì)應(yīng)的函數(shù)表達(dá)式聯(lián)立的二元一次方程組的解。
(3)解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種。
注意:利用圖像法求二元一次方程組的解是近似解,要得到準(zhǔn)確解,一般還是用代入消元法和加減消元法解方程組。
第三環(huán)節(jié)典型例題(10分鐘,學(xué)生獨(dú)立解決)。
探究方程與函數(shù)的相互轉(zhuǎn)化。
內(nèi)容:例1用作圖像的方法解方程組。
例2如圖,直線與的交點(diǎn)坐標(biāo)是。
第四環(huán)節(jié)反饋練習(xí)(10分鐘,學(xué)生解決全班交流)。
內(nèi)容:
1.已知一次函數(shù)與的圖像的交點(diǎn)為,則。
2.已知一次函數(shù)與的圖像都經(jīng)過(guò)點(diǎn)a(—2,0),且與軸分別交于b,c兩點(diǎn),則的面積為()。
(a)4(b)5(c)6(d)7。
3.求兩條直線與和軸所圍成的三角形面積。
4.如圖,兩條直線與的交點(diǎn)坐標(biāo)可以看作哪個(gè)方程組的解?
第五環(huán)節(jié)課堂小結(jié)(5分鐘,師生共同總結(jié))。
內(nèi)容:以“問(wèn)題串”的形式,要求學(xué)生自主總結(jié)有關(guān)知識(shí)、方法:
1.二元一次方程和一次函數(shù)的。圖像的關(guān)系;
(1)以二元一次方程的解為坐標(biāo)的點(diǎn)都在相應(yīng)的函數(shù)圖像上;
2.方程組和對(duì)應(yīng)的兩條直線的關(guān)系:
(1)方程組的解是對(duì)應(yīng)的兩條直線的交點(diǎn)坐標(biāo);
(2)兩條直線的交點(diǎn)坐標(biāo)是對(duì)應(yīng)的方程組的解;
(1)代入消元法;
(2)加減消元法;
(3)圖像法。要強(qiáng)調(diào)的是由于作圖的不準(zhǔn)確性,由圖像法求得的解是近似解。
第六環(huán)節(jié)作業(yè)布置。
習(xí)題7.7a組(優(yōu)等生)1、2、3b組(中等生)1、2c組1、2。
一次函數(shù)與二元一次方程課教學(xué)設(shè)計(jì)大全(18篇)篇七
本節(jié)課的教學(xué)設(shè)計(jì)反思是圍繞著今天“六個(gè)有效”的主題活動(dòng)展開反思的。
學(xué)生已初步掌握了函數(shù)的概念、一次函數(shù)的圖象及性質(zhì),并了解了函數(shù)的三種表達(dá)方式:圖象法、列表法、解析式法。在此基礎(chǔ)上通過(guò)知識(shí)提問(wèn)引導(dǎo)學(xué)生進(jìn)一步掌握一次函數(shù)的相關(guān)知識(shí)并能靈活的應(yīng)用到習(xí)題中,有效的“復(fù)習(xí)回顧”在本節(jié)課起到了承上啟下的作用。
根據(jù)實(shí)際的問(wèn)題情境感受生活中的一次函數(shù),利用已知的條件,來(lái)確定一次函數(shù)中正比例函數(shù)表達(dá)式,并理解確定正比例函數(shù)表達(dá)式的方法和條件。
設(shè)置這個(gè)例題是物理學(xué)中的一個(gè)彈簧現(xiàn)象,目的在于讓學(xué)生從不同的情景中獲取信息來(lái)求一次函數(shù)表達(dá)式,一次函數(shù)表達(dá)式的確定需要兩個(gè)條件,能由條件利用“待定系數(shù)”法求出一些簡(jiǎn)單的一次函數(shù)表達(dá)式,并能解決有關(guān)現(xiàn)實(shí)問(wèn)題.并進(jìn)一步體會(huì)函數(shù)表達(dá)式是刻畫現(xiàn)實(shí)世界的一個(gè)很好的數(shù)學(xué)模型,而且體現(xiàn)了數(shù)學(xué)這門學(xué)科的基礎(chǔ)性。
通過(guò)對(duì)求一次函數(shù)表達(dá)式方法的歸納和提升,加強(qiáng)學(xué)生對(duì)求一次函數(shù)表達(dá)式方法和步驟的理解,通過(guò)“感悟收獲”解決本節(jié)課的重點(diǎn)和難點(diǎn)。
通過(guò)分小組“比一比、練一練”的活動(dòng)形式,不僅激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)知識(shí)的興趣,而且能將本節(jié)課的知識(shí)靈活的應(yīng)用到習(xí)題中,提高了學(xué)生的解題能力和思維能力。
根據(jù)本班學(xué)生及教學(xué)情況在教學(xué)課堂后為了進(jìn)一步鞏固課堂知識(shí),布置一定量的作業(yè),難度不應(yīng)過(guò)大,有效的作業(yè)更能拓展學(xué)生的思維,并體會(huì)解決問(wèn)題的多樣性。
一次函數(shù)與二元一次方程課教學(xué)設(shè)計(jì)大全(18篇)篇八
一.教學(xué)目標(biāo):
1.認(rèn)知目標(biāo):
2)理解二元一次方程組的解的概念。
3)會(huì)用列表嘗試的方法找二元一次方程組的解。
2.能力目標(biāo):
1)滲透把實(shí)際問(wèn)題抽象成數(shù)學(xué)模型的思想。
2)通過(guò)嘗試求解,培養(yǎng)學(xué)生的探索能力。
3.情感目標(biāo):
1)培養(yǎng)學(xué)生細(xì)致,認(rèn)真的學(xué)習(xí)習(xí)慣。
2)在積極的教學(xué)評(píng)價(jià)中,促進(jìn)師生的情感交流。
二.教學(xué)重難點(diǎn)。
難點(diǎn):用列表嘗試的方法求出方程組的解。
三.教學(xué)過(guò)程。
(一)創(chuàng)設(shè)情景,引入課題。
1.本班共有40人,請(qǐng)問(wèn)能確定男*各幾人嗎?為什么?
(1)如果設(shè)本班男生x人,*y人,用方程如何表示?(x+y=40)。
(2)這是什么方程?根據(jù)什么?
2.男生比*多了2人。設(shè)男生x人,*y人。方程如何表示?x,y的值是多少?
3.本班男生比*多2人且男*共40人。設(shè)該班男生x人,*y人。方程如何表示?
兩個(gè)方程中的x表示什么?類似的兩個(gè)方程中的y都表示?
象這樣,同一個(gè)未知數(shù)表示相同的量,我們就應(yīng)用大括號(hào)把它們連起來(lái)組成一個(gè)方程組。
[設(shè)計(jì)意圖:從學(xué)生身邊取數(shù)據(jù),讓他們感受到生活中處處有數(shù)學(xué)]。
(二)探究新知,練習(xí)鞏固。
(1)請(qǐng)同學(xué)們看課本,了解二元一次方程組的的概念,并找出關(guān)鍵詞由教師板書。
[讓學(xué)生看書,引起他們對(duì)教材重視。找關(guān)鍵詞,加深他們對(duì)概念的了解。]。
x+y=3,x+y=200,。
2x-3=7,3x+4y=3。
y+z=5,x=y+10,。
2y+1=5,4x-y2=2。
學(xué)生作出判斷并要說(shuō)明理由。
(1)由學(xué)生給出引例的答案,教師指出這就是此方程組的解。
(2)練習(xí):把下列各組數(shù)的題序填入圖中適當(dāng)?shù)奈恢茫?/p>
x=1;x=-2;x=;-x=。
y=0;y=2;y=1;y=。
方程x+y=0的解,方程2x+3y=2的解,方程組x+y=0的解。
2x+3y=2。
(3)既滿足第一個(gè)方程也滿足第二個(gè)方程的解叫作二元一次方程組的解。
(4)練習(xí):已知x=0是方程組x-b=y的解,求a,b的值。
y=0.55x+2a=2y。
(三)合作探索,嘗試求解。
現(xiàn)在我們一起來(lái)探索如何尋找方程組的解呢?
1.已知兩個(gè)整數(shù)x,y,試找出方程組3x+y=8的解。
2x+3y=10。
學(xué)生兩人一小組合作探索。并讓已經(jīng)找出方程組解的學(xué)生利用實(shí)物投影,講明自己的解題思路。
提煉方法:列表嘗試法。
一般思路:由一個(gè)方程取適當(dāng)?shù)膞y的值,代到另一個(gè)方程嘗試。
2.據(jù)了解,某商店出售兩種不同星號(hào)的“紅雙喜”牌乒乓球。其中“紅雙喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同學(xué)一共買了4盒,剛好有15個(gè)球。
(1)設(shè)該同學(xué)“紅雙喜”二星乒乓球買了x盒,三星乒乓球買了y盒,請(qǐng)根據(jù)問(wèn)題中的條件列出關(guān)于x、y的方程組。(2)用列表嘗試的方法解出這個(gè)方程組的解。
由學(xué)生獨(dú)立完成,并分析講解。
(四)課堂小結(jié),布置作業(yè)。
1.這節(jié)課學(xué)哪些知識(shí)和方法?(二元一次方程組及解概念,列表嘗試法)。
2.你還有什么問(wèn)題或想法需要和大家交流?
3.作業(yè)本。
教學(xué)設(shè)計(jì)說(shuō)明:
1.本課設(shè)計(jì)主線有兩條。其一是知識(shí)線,內(nèi)容從二元一次方程組的概念到二元一次方程組解的概念再到列表嘗試法,環(huán)環(huán)相扣,層層遞進(jìn);第二是能力培養(yǎng)線,學(xué)生從看書理解二元一次方程組的概念到學(xué)會(huì)歸納解的概念,再到自主探索,用列表嘗試法解題,循序漸進(jìn),逐步提高。
2.“讓學(xué)生成為課堂的真正主體”是本課設(shè)計(jì)的主要理念。由學(xué)生給出數(shù)據(jù),得出結(jié)果,再讓他們?cè)诜e極嘗試后進(jìn)行講解,實(shí)現(xiàn)生生互評(píng)。把課堂的一切交給學(xué)生,相信他們能在已有的知識(shí)上進(jìn)一步學(xué)習(xí)提高,教師只是點(diǎn)播和引導(dǎo)者。
3.本課在設(shè)計(jì)時(shí)對(duì)教材也進(jìn)行了適當(dāng)改動(dòng)。例題方面考慮到數(shù)*時(shí)代,學(xué)生對(duì)膠卷已漸失興趣,所以改為學(xué)生比較熟悉的乒乓球?yàn)轶w裁。另一方面,充分挖掘練習(xí)的作用,為知識(shí)的落實(shí)打下軋實(shí)的基礎(chǔ),為學(xué)生今后的進(jìn)一步學(xué)習(xí)做好鋪墊。
2022初中語(yǔ)文優(yōu)秀教師教案范文-語(yǔ)文優(yōu)秀教案模板范文。
標(biāo)準(zhǔn)教案范文精選。
一次函數(shù)與二元一次方程課教學(xué)設(shè)計(jì)大全(18篇)篇九
3、會(huì)將一個(gè)二元一次方程變形成用關(guān)于一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的形式。
情感與態(tài)度目標(biāo)。
2、通過(guò)對(duì)實(shí)際問(wèn)題的分析,培養(yǎng)關(guān)注生活,進(jìn)一步體會(huì)方程是刻畫現(xiàn)實(shí)世界的有效數(shù)學(xué)模型,培養(yǎng)良好的數(shù)學(xué)應(yīng)用意識(shí)。
重點(diǎn):二元一次方程的概念及二元一次方程的解的概念。
難點(diǎn)。
1、了解二元一次方程的解的不唯一性和相關(guān)性。即了解二元一次方程的解有無(wú)數(shù)個(gè),但不是任意的兩個(gè)數(shù)是它的解。
2、把一個(gè)二元一次方程變形成用關(guān)于一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的形式,其實(shí)質(zhì)是解一個(gè)含有字母系數(shù)的方程。
1、通過(guò)創(chuàng)設(shè)問(wèn)題情境,讓學(xué)生在尋求問(wèn)題解決的過(guò)程中認(rèn)識(shí)二元一次方程,了解二元一次方程的特點(diǎn),體會(huì)到二元一次方程的引入是解決實(shí)際問(wèn)題的需要。
2、通過(guò)觀察、思考、交流等活動(dòng),激發(fā)學(xué)習(xí)情緒,營(yíng)造學(xué)習(xí)氣氛,給學(xué)生一定的時(shí)間和空間,自主探討,了解二元一次方程的解的不唯一性和相關(guān)性。
3、通過(guò)學(xué)練結(jié)合,以游戲的形式讓學(xué)生及時(shí)鞏固所學(xué)知識(shí)。
創(chuàng)設(shè)情境導(dǎo)入新課。
1、一個(gè)數(shù)的3倍比這個(gè)數(shù)大6,這個(gè)數(shù)是多少?
師生互動(dòng)探索新知。
1、發(fā)現(xiàn)新知。
根據(jù)它們的共同特征,你認(rèn)為怎樣的方程叫做二元一次方程?(二元一次方程的定義:含有兩個(gè)未知數(shù),且含有未知數(shù)的項(xiàng)的次數(shù)都是一次的方程叫做二元一次方程。)。
2、鞏固新知。
相同點(diǎn):方程兩邊都是整式,含有未知數(shù)的項(xiàng)的次數(shù)都是一次。
如果一個(gè)方程含有兩個(gè)未知數(shù),并且所含未知項(xiàng)都為1次方,那么這個(gè)整式方程就叫做二元一次方程,有無(wú)窮個(gè)解,若加條件限定有有限個(gè)解。
它山之石可以攻玉,以上就是為大家?guī)?lái)的3篇《一次函數(shù)與二元一次方程課教學(xué)設(shè)計(jì)》,您可以復(fù)制其中的精彩段落、語(yǔ)句,也可以下載doc格式的文檔以便編輯使用。
一次函數(shù)與二元一次方程課教學(xué)設(shè)計(jì)大全(18篇)篇十
本節(jié)課通過(guò)探索“方程”與“函數(shù)圖像”的關(guān)系,培養(yǎng)學(xué)生數(shù)學(xué)轉(zhuǎn)化的思想,通過(guò)學(xué)習(xí)二元一次方程方程組的解與直線交點(diǎn)坐標(biāo)之間的關(guān)系,使學(xué)生初步建立了“數(shù)”(二元一次方程)與“形”(一次函數(shù)的圖像)之間的對(duì)應(yīng)關(guān)系,進(jìn)一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識(shí)和能力.因此確定本節(jié)課的教學(xué)目標(biāo)為:
3.發(fā)展學(xué)生數(shù)形結(jié)合的意識(shí)和能力,使學(xué)生在自主探索中學(xué)會(huì)不同數(shù)學(xué)模型間的聯(lián)系.。
教學(xué)重點(diǎn)。
教學(xué)難點(diǎn)。
通過(guò)對(duì)數(shù)學(xué)模型關(guān)系的探究發(fā)展學(xué)生數(shù)形結(jié)合和數(shù)學(xué)轉(zhuǎn)化的思想意識(shí).。
1.教法學(xué)法。
啟發(fā)引導(dǎo)與自主探索相結(jié)合.。
2.課前準(zhǔn)備。
教具:多媒體課件、三角板.。
學(xué)具:鉛筆、直尺、練習(xí)本、坐標(biāo)紙.。
1.某水箱有5噸水,若用水管向外排水,每小時(shí)排水1噸,則x小時(shí)后還剩余y噸水.
(1)請(qǐng)找出自變量和因變量。
(2)你能列出x,y的關(guān)系式嗎。
(3)x,y的取值范圍是什么。
(4)在平面直角坐標(biāo)系中畫出這個(gè)函數(shù)的圖形.(注意xy的取值范圍).
2.(1)方程x+y=5的解有多少個(gè)?你能寫出這個(gè)方程的幾個(gè)解嗎?
(3).在一次函數(shù)y=x5的圖像上任取一點(diǎn),它的坐標(biāo)適合方程x+y=5嗎?
x+y=5與y=x5表示的關(guān)系相同。
1.兩個(gè)一次函數(shù)圖象的交點(diǎn)坐標(biāo)是相應(yīng)的二元。
(2)兩個(gè)函數(shù)的交點(diǎn)坐標(biāo)適合哪個(gè)方程?
xy5(3).解方程組驗(yàn)證一下你的發(fā)現(xiàn)。2xy1。
練習(xí):隨堂練習(xí)1。鞏固由一次函數(shù)的交點(diǎn)坐標(biāo)找相應(yīng)的二元一次方程組的解。
xy2(1)解。
2xy5(2)以方程x+y=2。
(3)以方程2x+y=5(4)方程組的解為坐標(biāo)的點(diǎn)在圖象上是哪個(gè)點(diǎn)?
練習(xí):知識(shí)技能1。鞏固由方程組的解求相應(yīng)的一次函數(shù)的交點(diǎn)坐標(biāo)。更深入的體會(huì)二元一次方程組的解與一次函數(shù)交點(diǎn)坐標(biāo)之間的對(duì)應(yīng)關(guān)系。
第三環(huán)節(jié)模型應(yīng)用。
1.某公司要印制產(chǎn)品宣傳材料.
印刷廠的費(fèi)用。
(1)請(qǐng)分別表示出兩個(gè)印刷廠費(fèi)用與x的關(guān)系式。
(2)在同一直角坐標(biāo)系中畫出函數(shù)的圖象。
(3)如何根據(jù)印刷材料的份數(shù)選擇印刷廠比較合算?
第四環(huán)節(jié)模型特例。
想一想。
么?
(1)觀察發(fā)現(xiàn)直線平行無(wú)交點(diǎn);
(2)小組研究計(jì)算發(fā)現(xiàn)方程組無(wú)解;
(3)從側(cè)面驗(yàn)證了兩直線有交點(diǎn),對(duì)應(yīng)的方程組有解,反之也成立;
(4)歸納小結(jié):兩平行直線的k相等;方程組中兩方程未知數(shù)的系數(shù)對(duì)應(yīng)成比例方程組無(wú)解。
進(jìn)一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識(shí)和能力,充分展示了方程與函數(shù)的相互轉(zhuǎn)化.進(jìn)一步挖掘出兩直線平行與k的關(guān)系。
第五環(huán)節(jié)課堂小結(jié)。
內(nèi)容:以“問(wèn)題串”的形式,要求學(xué)生自主總結(jié)有關(guān)知識(shí)、方法:
一次函數(shù)圖像上的點(diǎn)的坐標(biāo)都適合相應(yīng)的二元一次方程.。
2.方程組和對(duì)應(yīng)的兩條直線的關(guān)系:
方程組的解是對(duì)應(yīng)的兩條直線的交點(diǎn)坐標(biāo);
兩條直線的交點(diǎn)坐標(biāo)是對(duì)應(yīng)的方程組的解;
第六環(huán)節(jié)作業(yè)布置。
習(xí)題5.7。
一次函數(shù)與二元一次方程課教學(xué)設(shè)計(jì)大全(18篇)篇十一
(3)通過(guò)學(xué)生的思考和操作,力圖提示出方程與圖象之間的關(guān)系,引入二元一次方程組的圖象解法。同時(shí)培養(yǎng)學(xué)生初步的數(shù)形結(jié)合的意識(shí)和能力。
2.情感態(tài)度價(jià)值觀目標(biāo)。
通過(guò)學(xué)生的自主探索,提示出方程和圖象之間的對(duì)應(yīng)關(guān)系,加強(qiáng)新舊知識(shí)的聯(lián)系,培養(yǎng)學(xué)生的創(chuàng)新意識(shí),激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,使學(xué)生體驗(yàn)數(shù)學(xué)活動(dòng)充滿探索與創(chuàng)造。
前面已經(jīng)分別學(xué)習(xí)了一次函數(shù)和二元一次方程組,這節(jié)課研究二元一次方程組(數(shù))和一次函數(shù)(形)的關(guān)系,是這兩章知識(shí)的綜合運(yùn)用。強(qiáng)化了部分與整體的內(nèi)在聯(lián)系,知識(shí)與知識(shí)的內(nèi)在聯(lián)系,并為今后解析幾何的學(xué)習(xí)奠定基礎(chǔ)。
2、能根據(jù)一次函數(shù)的圖象求二元一次方程組的近似解。
方程和函數(shù)之間的對(duì)應(yīng)關(guān)系即數(shù)形結(jié)合的意識(shí)和能力。
學(xué)生操作——————自主探索的方法。
學(xué)生通過(guò)自己操作和思考,結(jié)合新舊知識(shí)的聯(lián)系,自主探索出方程與圖象之間的對(duì)應(yīng)關(guān)系,以引入二元一次方程組的圖象解法,同時(shí)也建立了“數(shù)”————二元一次方程組和“形”————函數(shù)的圖象(直線)之間的對(duì)應(yīng)關(guān)系,培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識(shí)和能力。
一.故事引入。
迪卡兒的故事——————蜘蛛給予的啟示。
在蜘蛛爬行的啟示下,迪卡兒創(chuàng)建了直角坐標(biāo)系,在坐標(biāo)系下幾何圖形(形)和方程(數(shù))建立聯(lián)系。迪卡兒坐標(biāo)系起到了橋梁和紐帶的作用。從而我們可以把圖形化成方程來(lái)研究,也可以用圖象來(lái)研究方程。
二.嘗試探疑。
1、y=x+1。
你們把我叫一次函數(shù),我也是二元一次方程啊!這是怎么回事,你知道嗎?
學(xué)生先是疑惑:方程就是方程,函數(shù)就是函數(shù),它們能有什么聯(lián)系呢?然后通過(guò)思考、交流,最后恍然大悟。初步感受一次函數(shù)與二元一次方程的內(nèi)在聯(lián)系。
2、函數(shù)y=x+1上的任意一點(diǎn)的坐標(biāo)是否滿足方程x—y=—1?
學(xué)生會(huì)迫不及待地拿起筆來(lái)計(jì)算。從函數(shù)y=x+1圖象上找?guī)讉€(gè)點(diǎn)看它們的坐標(biāo)是否滿足方程x—y=—1。結(jié)果都滿足。然后學(xué)生就會(huì)自主和同伴交流,問(wèn)一問(wèn)同伴函數(shù)y=x+1圖象上的點(diǎn)滿足不滿足方程x—y=—1。結(jié)果也都滿足。這樣他們就會(huì)搭成共識(shí):函數(shù)y=x+1上的任意一點(diǎn)的坐標(biāo)都滿足方程x—y=—1。
然后學(xué)生會(huì)用同樣的方法得出另一個(gè)結(jié)論:以方程x—y=—1的解為坐標(biāo)的點(diǎn)一定在函數(shù)y=x+1的圖象上。然后開始思索函數(shù)y=x+1和方程x—y=—1到底有何關(guān)系呢?通過(guò)交流自動(dòng)得出結(jié)論:以方程x—y=—1的解為坐標(biāo)的點(diǎn)組成的圖象與一次函數(shù)y=x+1的圖象相同。
3。在同一坐標(biāo)系下,化出y=x+1與y=4x—2的圖象,他們的交點(diǎn)坐標(biāo)是什么?
方程組y=x+1的解是什么?二者有何關(guān)系?
y=4x—2。
y=x+1的解。
y=4x—2。
教師作最后總結(jié):因?yàn)楹瘮?shù)和方程有以上關(guān)系,所以我們就可以用圖象法解決方程問(wèn)題,也可以用方程的方法解決圖象問(wèn)題。
解方程組x—2y=—2。
2x—y=2。
學(xué)生會(huì)很快的用消元法解出來(lái)。
老師發(fā)問(wèn):誰(shuí)還有其他的方法?如果有,鼓勵(lì)學(xué)生大膽提出。并給予口頭表?yè)P(yáng)。如果沒(méi)有人用其他的方法,老師提出問(wèn)題:你能不能用圖象的方法求方程組的解呢?這時(shí),學(xué)生就會(huì)去探索新的思路、方法。
一回憶方程與函數(shù)的關(guān)系,有了!方程組的解不就是兩個(gè)方程變形得到的兩個(gè)函數(shù)圖象的交點(diǎn)坐標(biāo)嗎?學(xué)生就會(huì)迅速動(dòng)筆用這種方法把方程解出來(lái)。作完之后,互相交流。學(xué)生總結(jié)一下做題步驟:
1。把兩個(gè)方程都化成函數(shù)表達(dá)式的形式。
2。畫出兩個(gè)函數(shù)的圖象。
3。畫出交點(diǎn)坐標(biāo),交點(diǎn)坐標(biāo)即為方程組的解。
問(wèn)題又出來(lái)了,有的同學(xué)的解是x=2有的同學(xué)的解是x=2。1y=2。1。
y=1。9有的同學(xué)的解是……雖然都和消元法得到的結(jié)果相近,但各不相同。
老師提問(wèn):你能說(shuō)一下用圖象法解方程組的不足嗎?
學(xué)生爭(zhēng)先恐后的回答:用這種方法求的解是近似值。不準(zhǔn)確。學(xué)生提出疑問(wèn):既然不準(zhǔn)確,那學(xué)習(xí)它有什么用呢?用消元法就足夠了!
教師解釋一下:在現(xiàn)實(shí)生活和生產(chǎn)中,我們會(huì)遇到特別復(fù)雜的方程,用消元法解不太容易,我們就可以用電腦繪制成函數(shù)圖象,很容易找出交點(diǎn)坐標(biāo)。教師可以用z+z智能教育平臺(tái)演示一下。
[點(diǎn)評(píng)]用作圖象的方法解方程組,這體現(xiàn)了兩個(gè)知識(shí)點(diǎn)的內(nèi)在聯(lián)系。學(xué)數(shù)學(xué)知識(shí),探索知識(shí)點(diǎn)之間的聯(lián)系,可起到化新為舊的作用,達(dá)到事半功倍的效果。逐步讓學(xué)生學(xué)會(huì)這種學(xué)習(xí)新知識(shí)的技巧。
四.引申。
方程組x+y=2。
x+y=5解的情況如何?你能從函數(shù)的角度解釋一下嗎?
學(xué)生用消元法開始解方程組,結(jié)果無(wú)解,怎么回事呢?學(xué)生會(huì)嘗試運(yùn)用方程組的圖象解法。畫出兩個(gè)函數(shù)圖象。答案有了!圖象是平行的,沒(méi)有交點(diǎn)。所以方程組無(wú)解了。哇!太神奇了!方程的問(wèn)題可以用圖象的方法解決了。
[點(diǎn)評(píng)]因?yàn)橛辛松厦娴挠米鲌D象法解方程組,在這里,學(xué)生就會(huì)自覺(jué)地從函數(shù)的角度探究方程的問(wèn)題,初步具有了數(shù)形結(jié)合的意識(shí)和能力。
五.課后小結(jié)。
本節(jié)課我們通過(guò)操作和思考,揭示了二元一次方程和函數(shù)圖象之間的對(duì)應(yīng)關(guān)系,從而引入二元一次方程組的圖象解法,同時(shí)也建立了“數(shù)”————二元一次方程與“形”——————函數(shù)圖象之間的對(duì)應(yīng)關(guān)系,培養(yǎng)了學(xué)生初步的數(shù)形結(jié)合的意識(shí)和能力。
六.作業(yè)。
1。用作圖象法解方程組2x+y=4。
2x—3y=12。
2。如圖,直線l、l相交于點(diǎn)a,試求出a點(diǎn)坐標(biāo)。
一次函數(shù)與二元一次方程課教學(xué)設(shè)計(jì)大全(18篇)篇十二
本節(jié)課是在學(xué)生已經(jīng)學(xué)會(huì)從單個(gè)一次函數(shù)的圖象分析獲取信息,進(jìn)而解決有關(guān)實(shí)際問(wèn)題的基礎(chǔ)上展開的。因此,本節(jié)課的重點(diǎn)應(yīng)該放在怎樣從兩個(gè)函數(shù)圖象的比較、分析中提取有用信息,弄清兩者之間的聯(lián)系,從而提高學(xué)生的識(shí)圖能力與解決實(shí)際問(wèn)題的能力。難點(diǎn)在于怎樣抓住有用的特征去分析、比較。于是,本節(jié)課的基本思路是以學(xué)生熟悉的一次函數(shù)的圖象及性質(zhì)為鋪墊,以學(xué)生感興趣的現(xiàn)實(shí)問(wèn)題作素材,以交流合作為主要形式展開學(xué)習(xí)活動(dòng)。
例1:某種摩托車的油箱最多可儲(chǔ)油10升,加滿油后,油箱中的剩余油量y(升)與摩托車行駛路程x(千米)之間的關(guān)系引伸的問(wèn)題帶來(lái)了挑戰(zhàn)性的懸念。只有讓學(xué)生在探索問(wèn)題之中學(xué)會(huì)提出問(wèn)題,才能最終體驗(yàn)到數(shù)學(xué)的抽象,形成穩(wěn)定的學(xué)習(xí)興趣。
2、本節(jié)課充分體現(xiàn)了學(xué)生在自主探索與合作交流中學(xué)會(huì)學(xué)習(xí)這一理念,學(xué)生有足夠的自主探索時(shí)間,有與同學(xué)合作互動(dòng)的空間,有與老師交流表達(dá)的機(jī)會(huì)。學(xué)生不是從老師那里獲取知識(shí),而是在數(shù)學(xué)活動(dòng)的過(guò)程中發(fā)現(xiàn)規(guī)律、體驗(yàn)成功。
3、本節(jié)課通過(guò)函數(shù)圖象獲取信息,解決實(shí)際問(wèn)題,培養(yǎng)學(xué)生的形象思維及數(shù)學(xué)應(yīng)用能力,同時(shí)培養(yǎng)學(xué)生良好的環(huán)保意識(shí)和熱愛(ài)生活的意識(shí)及利用函數(shù)圖象解決簡(jiǎn)單的實(shí)際問(wèn)題通過(guò)方程與函數(shù)關(guān)系的研究,建立良好的知識(shí)聯(lián)系。
1、個(gè)別差生的積極性還未調(diào)動(dòng)起來(lái),還須探索出關(guān)注差生的方法來(lái)提高教學(xué)及格率。
2、在分析一次函數(shù)表達(dá)式時(shí),在課本上用的“數(shù)形結(jié)合”方法可另外用“待定系數(shù)法”分析;以便學(xué)生能拓展思維。
一次函數(shù)與二元一次方程課教學(xué)設(shè)計(jì)大全(18篇)篇十三
教材通過(guò)引例對(duì)圖像方法與代數(shù)方法的比較,使學(xué)生了解解決應(yīng)用問(wèn)題的策略和方法是多樣性的,同時(shí)也使學(xué)生理解圖像方法與代數(shù)方法在解決具體問(wèn)題中各自的優(yōu)劣,從而對(duì)方法作出正確的選擇.對(duì)于教材的這一方面的使用,教師應(yīng)根據(jù)自己學(xué)生的特點(diǎn),選擇合理的方式去讓學(xué)生理解不同方法去解決同一問(wèn)題。
本節(jié)課主要要求學(xué)生能夠利用二元一次方程組解決一次函數(shù)的解析式問(wèn)題,根據(jù)一次函數(shù)解析式進(jìn)一步解決相關(guān)的一些問(wèn)題。要讓學(xué)生理解為什么要用二元一次方程組去求解一次函數(shù)的解析式的必要性,從而掌握本堂課的基礎(chǔ)知識(shí)。在教學(xué)的過(guò)程中,要讓學(xué)生充分理解圖像方法和代數(shù)方法解決問(wèn)題的特點(diǎn),在這個(gè)基礎(chǔ)上,學(xué)生掌握用二元一次方程組解決一次函數(shù)的解析式問(wèn)題才會(huì)有著堅(jiān)實(shí)的理論基礎(chǔ),有關(guān)這一方面的題目要讓學(xué)生充分討論,其理解才會(huì)深刻;同時(shí)要以這一部分的知識(shí)為載體,結(jié)合教材例題,在補(bǔ)充分段圖形題,甚至表格題,讓學(xué)生充分理解用方程的思想去解決函數(shù)問(wèn)題。
一次函數(shù)與二元一次方程課教學(xué)設(shè)計(jì)大全(18篇)篇十四
把具有相同未知數(shù)的兩個(gè)二元一次方程合在一起,就組成了一個(gè)二元一次方程組.
此外,組成方程組的各個(gè)方程也不必同時(shí)含有兩個(gè)未知數(shù).
二.會(huì)檢驗(yàn)一組數(shù)是不是某個(gè)二元一次方程組的解;。
滿足每一個(gè)方程,只有這組數(shù)滿足方程組中的所有方程時(shí),該組數(shù)才是原方程組的解,否則不是。
三.會(huì)用代入法和加減法解二元一次方程組,了解代入消元法和加減消元法的基本思想;。
代入法消元:
1.代入消元法是解方程組的兩種基本方法之一。代入消元法就是把方程組其中一個(gè)方程的某個(gè)未知數(shù)用含另一個(gè)未知數(shù)的代數(shù)式表示,然后代入另一個(gè)方程,消去一個(gè)未知數(shù),將二元一次方程組轉(zhuǎn)化為一元一次方程來(lái)解。這種解二元一次方程組的方法叫代入消元法,簡(jiǎn)稱代入法。
(2)將變形后的這個(gè)關(guān)系式代入另一個(gè)方程,消去一個(gè)未知數(shù),得到一個(gè)一元一次方程;。
(3)解這個(gè)一元一次方程,求出一個(gè)未知數(shù)的值;。
(4)將求得的這個(gè)未知數(shù)的值代入變形后的關(guān)系式中,求出另一個(gè)未知數(shù)的值;。
加減法消元:
1.加減消元法是解二元一次方程組的基本方法之一,加減消元法是通過(guò)將兩個(gè)方程相加(或相減)消去一個(gè)未知數(shù),將二元一次方程組轉(zhuǎn)化為一元一次方程來(lái)解,這種解法叫做加減消元法,簡(jiǎn)稱加減法。
(3)解這個(gè)一元一次方程,求得其中一個(gè)未知數(shù)的值;。
4.能夠根據(jù)題目特點(diǎn)熟練選用代入法或加減法解二元一次方程組;。
5.能借助二元一次方程組解決一些實(shí)際問(wèn)題,使用代數(shù)方法去反應(yīng)現(xiàn)實(shí)生活中的等量關(guān)系,體會(huì)代數(shù)方法的優(yōu)越性.
一次函數(shù)與二元一次方程課教學(xué)設(shè)計(jì)大全(18篇)篇十五
“解二元一次方程組”是“二元一次方程組”一章中很重要的知識(shí),占有重要的地位、通過(guò)本節(jié)課的教學(xué),使學(xué)生會(huì)用代入消元法和加減消元法解二元一次方程組;了解“消元”思想。
教學(xué)后發(fā)現(xiàn),大部分學(xué)生能掌握二元一次議程組的解法,教學(xué)一開始給出了一個(gè)二元一次方程組。提問(wèn):含有兩個(gè)未知數(shù)的方程我們沒(méi)有學(xué)習(xí)過(guò)怎樣解,那么我們學(xué)過(guò)解什么類型的方程?答:一元一次方程。
提問(wèn):那可怎么辦呢?這時(shí),學(xué)生通過(guò)交流,教師只要略加指導(dǎo),方法自然得出,這其中也體現(xiàn)了化歸思想,教學(xué)的最后給出了一個(gè)三元一次方程組,同樣也沒(méi)有學(xué)過(guò)它的解法,那學(xué)過(guò)什么類型的方程組,這時(shí)又怎么辦呢?與教學(xué)開始時(shí)方法一樣,但這時(shí)不需點(diǎn)拔、指導(dǎo),學(xué)生按“消元”“化歸”的思想,化“三元”為“二元”,化“二元”為“一元”,這對(duì)學(xué)生今后獨(dú)立解決總是無(wú)疑是種好的方法。
有個(gè)別同學(xué)在選擇方法上:是用代入法還是加減法,很猶豫,解答起來(lái)速度較慢,只要多加練習(xí),一定會(huì)即快又準(zhǔn)。
一次函數(shù)與二元一次方程課教學(xué)設(shè)計(jì)大全(18篇)篇十六
學(xué)習(xí)目標(biāo):
2、能根據(jù)一次函數(shù)的圖像求二元一次方程組的近似值。
學(xué)習(xí)重點(diǎn):
學(xué)習(xí)難點(diǎn):
1、做圖像時(shí)要標(biāo)準(zhǔn)、精確,近似值才接近。
學(xué)習(xí)方法:
先自學(xué)課本,用心思考自主學(xué)習(xí)部分,努力獨(dú)立完成,再與其他同學(xué)討論未明白的內(nèi)容。課上展示,針對(duì)自己不明白問(wèn)題多聽(tīng)多問(wèn)。
自主學(xué)習(xí)部分:
問(wèn)題1.(1)方程x+y=5的解有多少組?寫出其中的幾組解。
(3)在一次函數(shù)y=5-x的圖像上任取一點(diǎn),它們的坐標(biāo)適合方程x+y=5嗎?
(5)由以上的探究過(guò)程,你發(fā)現(xiàn)了什么?
(3)由以上探究過(guò)程,我們發(fā)現(xiàn)解二元一次方程組的方法除了加減消元法和代入消元法,還可以用法解方程組;我們還發(fā)現(xiàn)可以利用解二元一次方程組的方法求兩條直線交點(diǎn)的坐標(biāo)。
合作探究:
(1)用做圖像的方法解方程組。
(2)用解方程的方法求直線y=4-2x與直線y=2x-12交點(diǎn)。
一次函數(shù)與二元一次方程課教學(xué)設(shè)計(jì)大全(18篇)篇十七
1.知識(shí)與能力目標(biāo)。
(3)通過(guò)學(xué)生的思考和操作,力圖提示出方程與圖象之間的關(guān)系,引入二元一次方程組的圖象解法。同時(shí)培養(yǎng)學(xué)生初步的數(shù)形結(jié)合的意識(shí)和能力。
2.情感態(tài)度價(jià)值觀目標(biāo)。
通過(guò)學(xué)生的自主探索,提示出方程和圖象之間的對(duì)應(yīng)關(guān)系,加強(qiáng)新舊知識(shí)的聯(lián)系,培養(yǎng)學(xué)生的創(chuàng)新意識(shí),激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,使學(xué)生體驗(yàn)數(shù)學(xué)活動(dòng)充滿探索與創(chuàng)造。
教材分析。
前面已經(jīng)分別學(xué)習(xí)了一次函數(shù)和二元一次方程組,這節(jié)課研究二元一次方程組(數(shù))和一次函數(shù)(形)的關(guān)系,是這兩章知識(shí)的綜合運(yùn)用。強(qiáng)化了部分與整體的內(nèi)在聯(lián)系,知識(shí)與知識(shí)的內(nèi)在聯(lián)系,并為今后解析幾何的學(xué)習(xí)奠定基礎(chǔ)。
教學(xué)重點(diǎn)。
教學(xué)難點(diǎn)。
方程和函數(shù)之間的對(duì)應(yīng)關(guān)系即數(shù)形結(jié)合的意識(shí)和能力。
教學(xué)方法。
學(xué)生操作------自主探索的方法。
學(xué)生通過(guò)自己操作和思考,結(jié)合新舊知識(shí)的聯(lián)系,自主探索出方程與圖象之間的對(duì)應(yīng)關(guān)系,以引入二元一次方程組的圖象解法,同時(shí)也建立了“數(shù)”----二元一次方程組和“形”----函數(shù)的圖象(直線)之間的對(duì)應(yīng)關(guān)系,培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識(shí)和能力。
教學(xué)過(guò)程。
一、故事引入。
迪卡兒的故事------蜘蛛給予的啟示。
在蜘蛛爬行的啟示下,迪卡兒創(chuàng)建了直角坐標(biāo)系,在坐標(biāo)系下幾何圖形(形)和方程(數(shù))建立聯(lián)系。迪卡兒坐標(biāo)系起到了橋梁和紐帶的作用。從而我們可以把圖形化成方程來(lái)研究,也可以用圖象來(lái)研究方程。
二、嘗試探疑。
1、y=x+1。
你們把我叫一次函數(shù),我也是二元一次方程啊!這是怎么回事,你知道嗎?
學(xué)生先是疑惑:方程就是方程,函數(shù)就是函數(shù),它們能有什么聯(lián)系呢?然后通過(guò)思考、交流,最后恍然大悟。初步感受一次函數(shù)與二元一次方程的內(nèi)在聯(lián)系。
2、函數(shù)y=x+1上的任意一點(diǎn)的坐標(biāo)是否滿足方程x-y=-1?
學(xué)生會(huì)迫不及待地拿起筆來(lái)計(jì)算。從函數(shù)y=x+1圖象上找?guī)讉€(gè)點(diǎn)看它們的坐標(biāo)是否滿足方程x-y=-1。結(jié)果都滿足。然后學(xué)生就會(huì)自主和同伴交流,問(wèn)一問(wèn)同伴函數(shù)y=x+1圖象上的點(diǎn)滿足不滿足方程x-y=-1。結(jié)果也都滿足。這樣他們就會(huì)搭成共識(shí):函數(shù)y=x+1上的任意一點(diǎn)的坐標(biāo)都滿足方程x-y=-1。
然后學(xué)生會(huì)用同樣的方法得出另一個(gè)結(jié)論:以方程x-y=-1的解為坐標(biāo)的點(diǎn)一定在函數(shù)y=x+1的圖象上。然后開始思索函數(shù)y=x+1和方程x-y=-1到底有何關(guān)系呢?通過(guò)交流自動(dòng)得出結(jié)論:以方程x-y=-1的解為坐標(biāo)的點(diǎn)組成的圖象與一次函數(shù)y=x+1的圖象相同。
3.在同一坐標(biāo)系下,化出y=x+1與y=4x-2的圖象,他們的交點(diǎn)坐標(biāo)是什么?
方程組y=x+1的解是什么?二者有何關(guān)系?
y=4x-2。
y=x+1的解。
y=4x-2。
教師作最后總結(jié):因?yàn)楹瘮?shù)和方程有以上關(guān)系,所以我們就可以用圖象法解決方程問(wèn)題,也可以用方程的方法解決圖象問(wèn)題。
解方程組x-2y=-2。
2x-y=2。
學(xué)生會(huì)很快的用消元法解出來(lái)。
老師發(fā)問(wèn):誰(shuí)還有其他的方法?如果有,鼓勵(lì)學(xué)生大膽提出。并給予口頭表?yè)P(yáng)。如果沒(méi)有人用其他的`方法,老師提出問(wèn)題:你能不能用圖象的方法求方程組的解呢?這時(shí),學(xué)生就會(huì)去探索新的思路、方法。
一回憶方程與函數(shù)的關(guān)系,有了!方程組的解不就是兩個(gè)方程變形得到的兩個(gè)函數(shù)圖象的交點(diǎn)坐標(biāo)嗎?學(xué)生就會(huì)迅速動(dòng)筆用這種方法把方程解出來(lái)。作完之后,互相交流。學(xué)生總結(jié)一下做題步驟:
1.把兩個(gè)方程都化成函數(shù)表達(dá)式的形式。
2.畫出兩個(gè)函數(shù)的圖象。
3.畫出交點(diǎn)坐標(biāo),交點(diǎn)坐標(biāo)即為方程組的解。
問(wèn)題又出來(lái)了,有的同學(xué)的解是x=2有的同學(xué)的解是x=2.1y=2.1。
y=1.9有的同學(xué)的解是……雖然都和消元法得到的結(jié)果相近,但各不相同。
老師提問(wèn):你能說(shuō)一下用圖象法解方程組的不足嗎?
學(xué)生爭(zhēng)先恐后的回答:用這種方法求的解是近似值。不準(zhǔn)確。學(xué)生提出疑問(wèn):既然不準(zhǔn)確,那學(xué)習(xí)它有什么用呢?用消元法就足夠了!
教師解釋一下:在現(xiàn)實(shí)生活和生產(chǎn)中,我們會(huì)遇到特別復(fù)雜的方程,用消元法解不太容易,我們就可以用電腦繪制成函數(shù)圖象,很容易找出交點(diǎn)坐標(biāo)。教師可以用z+z智能教育平臺(tái)演示一下。
用作圖象的方法解方程組,這體現(xiàn)了兩個(gè)知識(shí)點(diǎn)的內(nèi)在聯(lián)系。學(xué)數(shù)學(xué)知識(shí),探索知識(shí)點(diǎn)之間的聯(lián)系,可起到化新為舊的作用,達(dá)到事半功倍的效果。逐步讓學(xué)生學(xué)會(huì)這種學(xué)習(xí)新知識(shí)的技巧。
四、引申。
方程組x+y=2。
x+y=5解的情況如何?你能從函數(shù)的角度解釋一下嗎?
學(xué)生用消元法開始解方程組,結(jié)果無(wú)解,怎么回事呢?學(xué)生會(huì)嘗試運(yùn)用方程組的圖象解法。畫出兩個(gè)函數(shù)圖象。答案有了!圖象是平行的,沒(méi)有交點(diǎn)。所以方程組無(wú)解了。哇!太神奇了!方程的問(wèn)題可以用圖象的方法解決了。
因?yàn)橛辛松厦娴挠米鲌D象法解方程組,在這里,學(xué)生就會(huì)自覺(jué)地從函數(shù)的角度探究方程的問(wèn)題,初步具有了數(shù)形結(jié)合的意識(shí)和能力。
五、課后小結(jié)。
本節(jié)課我們通過(guò)操作和思考,揭示了二元一次方程和函數(shù)圖象之間的對(duì)應(yīng)關(guān)系,從而引入二元一次方程組的圖象解法,同時(shí)也建立了“數(shù)”----二元一次方程與“形”------函數(shù)圖象之間的對(duì)應(yīng)關(guān)系,培養(yǎng)了學(xué)生初步的數(shù)形結(jié)合的意識(shí)和能力。
六、作業(yè)。
1.用作圖象法解方程組2x+y=4。
2x-3y=12。
2.如圖,直線l、l相交于點(diǎn)a,試求出a點(diǎn)坐標(biāo)。
教學(xué)反思。
這節(jié)課由故事引入,激發(fā)了學(xué)生極大的學(xué)習(xí)興趣。然后提出了三個(gè)尖銳的問(wèn)題,讓學(xué)生嘗試探索,在探索中既體會(huì)到了探索的艱辛,又體會(huì)到了成功的喜悅。在應(yīng)用和引申過(guò)程中,盡量讓學(xué)生自主的發(fā)現(xiàn)問(wèn)題,自主的解決問(wèn)題。學(xué)生在緊張、愉快中完成了這節(jié)課的學(xué)習(xí)。
一次函數(shù)與二元一次方程課教學(xué)設(shè)計(jì)大全(18篇)篇十八
(1)給出一個(gè)實(shí)際問(wèn)題請(qǐng)同學(xué)們來(lái)分析題目,設(shè)出未知數(shù),尋找相等關(guān)系,列出方程,當(dāng)然前提是設(shè)兩個(gè)未知數(shù),得到一個(gè)二元一次方程組,然后給出概念,提醒學(xué)生要注意概念中是含有兩個(gè)未知數(shù)的兩個(gè)一次方程所組成的,接下來(lái)就給出幾個(gè)判斷鞏固定義。
(3)做書本上的習(xí)題。這次備這節(jié)課時(shí),我就想到以前上這課很沒(méi)有意思,學(xué)生覺(jué)得內(nèi)容很簡(jiǎn)單很枯燥,根據(jù)簡(jiǎn)單的實(shí)際問(wèn)題來(lái)列方程組對(duì)他們而言也不是難事。在備課時(shí)我就從學(xué)生的角度去看教材,既然內(nèi)容簡(jiǎn)單那就讓學(xué)生自學(xué)為主。所以我今天上課的流程變成先出事兩個(gè)問(wèn)題情境(列二元一次方程組解決),然后直接給出本堂課的內(nèi)容:二元一次方程、二元一次方程的解、二元一次方程組以及二元一次方程組的解的概念,請(qǐng)同學(xué)們根據(jù)名稱思考,并舉例說(shuō)明。給他們幾分鐘時(shí)間思考以后,就請(qǐng)學(xué)生來(lái)當(dāng)小老師,上黑板來(lái)講,也有同學(xué)覺(jué)得小老師講的不夠清楚,又上來(lái)重講的,一共請(qǐng)了3名同學(xué),有同學(xué)提出的問(wèn)題很簡(jiǎn)單,也有同學(xué)提出了一個(gè)引起大家爭(zhēng)議的問(wèn)題,就是x=3,x+y=4這樣的方程組是不是二元一次方程組,在大家爭(zhēng)論以后我給出了正確答案以及這個(gè)概念中的注意點(diǎn)。最后在請(qǐng)學(xué)生來(lái)總結(jié)今天所學(xué)到的主要內(nèi)容和注意點(diǎn)。