教案模板是教師在備課過程中用來指導教學活動的一種規范化工具。接下來是一些優秀的教案模板范文,供大家學習借鑒,提高教學設計的水平。
八年級數學一次函數與二元一次方程組說課稿(專業14篇)篇一
2.知道二元一次方程組是反映現實世界量之間相等關系的一種有效的數學模型20xx年-20xx學年七年級數學下冊全冊教案(人教版)20xx年-20xx學年七年級數學下冊全冊教案(人教版)。
3.引導學生關注身邊的數學,滲透將來未知轉達化為已知的辯證思想。
2.徹底理解題意。
一、情境引入。
二、建立模型。
1.怎樣設未知數?
2.找本題等量關系?從哪句話中找到的?
3.列方程組。
4.解方程組。
5.檢驗寫答案。
三、練習。
(1)甲、乙兩數和是40差是6,求這兩數。
(2)80班共有64名學生,其中男生比女生多8人,求這個班男生人數,女生人數。
(3)已知關于求x、y的方程,
2.p38練習第1題。
四、小結。
五、作業。
八年級數學一次函數與二元一次方程組說課稿(專業14篇)篇二
1.會列出二元一次方程組解簡單應用題,并能檢驗結果的合理性。
2.知道二元一次方程組是反映現實世界量之間相等關系的一種有效的數學模型。
3.引導學生關注身邊的數學,滲透將來未知轉達化為已知的辯證思想。
1.列二元一次方程組解簡單問題。
2.徹底理解題意
找等量關系列二元一次方程組。
1.怎樣設未知數?
2.找本題等量關系?從哪句話中找到的?
3.列方程組。
4.解方程組。
5.檢驗寫答案。
思考:怎樣用一元一次方程求解?
比較用一元一次方程求解,用二元一次方程組求解誰更容易?
1.根據問題建立二元一次方程組。
(1)甲、乙兩數和是40差是6,求這兩數。
(2)80班共有64名學生,其中男生比女生多8人,求這個班男生人數,女生人數。
(3)已知關于求x、y的方程,
是二元一次方程。求a、b的值。
2.p38練習第1題。
小組討論:列二元一次方程組解應用題有哪些基本步驟?
p42。習題2.3a組第1題。
后記:
2.3二元一次方程組的應用(2)
八年級數學一次函數與二元一次方程組說課稿(專業14篇)篇三
本課內容是在學生掌握了二元一次方程組有關概念之后的學習內容,用代入消元法解二元一次方程組是學生接觸到的解方程組的第一種方法,是解二元一次方程組的方法之一,消元體現了“化未知為已知”的重要思想,它是學習本章的重點和難點。學完以后可以幫助我們解決一些實際的問題,也是為了今后學習函數、線性方程組及高次方程組奠定了基礎。
2、理解代入消元法的基本思想;了解化“未知為已知”的轉化過程,體會化歸思想。
2、難點:在“消元”的過程中能夠判斷消去哪個未知數,使得解方程組的運算轉為較簡便的過程。
(1)復習引入。
設計意圖:讓學生復習鞏固二元一次方程組和二元一次方程組解的概念,追問其他一個拋磚引玉的效果,激起學生的學習興趣,引出課題。
(2)探究新知。
此過程通過播放洋蔥視頻中的代入消元法片段視頻,播放致列出二元一次方程組和一元一次后點擊暫停,先讓學生考慮想清楚兩個問題。
一個問題是為什么能用一元一次方程解決的實際問題我們要用二元一次方程組來解決?第二個問題觀察二元一次方程組和一元一次方程組之間有何異同?學生想清楚這兩個問題后,滲透消元的思想,然后繼續播放視頻讓學生知道二元一次方程組完整的解題過程,并在每一步做出相應的`解釋,怎么變化而來。
播放視頻完后先讓學生自主總結歸納解二元一次方程組的基本步驟,教師引導總結。接著完成配套的3個習題,強化訓練。
(3)例題講解。
讓學生嘗試解答。
設計意圖:讓學生通過例1和例2的對比,引出如何選擇變化有利于計算的問題。
預想大部分學生例2會存在這樣的問題到底選擇哪個方程變形,當學生做出例1,猶豫例2時,提出這樣兩個問題:
(1)在解二元一次方程組的步驟中變形的過程我們應當如何變形?把一個方程變形為用含x的式子表示y(或含y的式子表示x)。
(2)選擇哪個方程變形比較簡便呢?
再一次激起學生的學習興趣,接著播放洋蔥視頻繼續代入消元法片段視頻,讓學生清楚的知道在不同的二元一次方程組中在變形的過程選擇那一個方程,選擇那一個未知數變形能簡便的進行運算。
1、這節課你學到了哪些知識和方法?
2、你還有什么問題或想法需要和大家交流分享?
xxx。
通過洋蔥視頻輔助教學,使得學生容易體會到“消元”思想的滲透,學生能夠學會規范解題。通過視頻的講解能夠準確的選擇要變形的方程,如果是傳統的教學方式可能會出現很多學生不理解的地方,但通過洋蔥數學短小精辟的視頻講解一下子讓學生理解透!
八年級數學一次函數與二元一次方程組說課稿(專業14篇)篇四
二元一次方程組是新人教版七年級數學(下)第八章第一節的內容。在此之前,學生已學習了一元一次方程,這為過渡到本節的學習起著鋪墊作用。本節內容主要學習和二元一次方程組有關的四個概念。本節內容既是前面知識的深化和應用,又是今后用二元一次方程組解決生活中的實際問題的預備知識,占據重要的地位,是學生新的方程建模的基礎課,為今后學習一次函數以及其他學科(如:物理)的學習奠定基礎,同時建模的思想方法對學生今后的發展有引導作用,因此本節課具有承上啟下的作用。
2.教學目標。
[知識技能]。
掌握二元一次方程、二元一次方程組及它們的解的概念,通過實例認識二元一次方程和二元一次方程組也是反映數量關系的重要數學模型。
[數學思考]。
體會實際問題中二元一次方程組是反映現實世界多個量之間相等關系的一種有效的數學模型,能感受二元一次方程(組)的重要作用。
[解決問題]。
通過對本節知識點的學習,提高分析問題、解決問題和邏輯思維能力。
[情感態度]。
引導學生對情境問題的觀察、思考,激發學生的好奇心和求知欲,并在運用數學知識解答問題的活動中獲取成功的體驗,建立學習的自信心。
3.教學重點與難點。
按照《課程標準》的要求,根據上述地位與作用的分析及教學目標,本節課中相關概念的掌握是教學重點。
七年級學生思維活躍,好奇心強,希望平等交流研討,厭煩空洞的說教。因此,在教學過程中,積極采用形象生動、形式多樣的教學方法和學生廣泛的、積極主動參與的學習方式,激發他們的興趣。一方面通過學案與課件,使他們的注意力始終集中在課堂上;另一方面創造條件和機會,讓學生自主練習,合作交流,培養學生學習的主動性、與人合作的精神,激發學生的興趣和求知欲,感受成功的樂趣。
1.教法。
數學課程標準明確指出:有效的數學學習活動不能單純地依賴模仿與記憶,動手實踐、自主探究與合作交流是學生學習數學的重要方式。所以我在教學中不只傳授知識,更要激發學生的創造思維,引導學生探究,發現結論的方法。正所謂“教是為了不教”。所以我采用引導發現法為主,情景問答法、討論法、活動競賽法、利用多媒體課件輔助教學等完成本節的教學,真正做到教師的主導地位。
2.學法。
學生是學習的主體,所以本節教學中,引導學生自主探究、歸納總結,運用自主探索與合作交流開拓自己的創造思維。這樣調動學生的積極性,激發學生興趣,使學生由被動學習變為積極主動的探究,這也符合數學的直觀性和形象性。
為了達到本節課的教學目標,突出重點,突破難點,我把教學過程設計為五個環節:
1。創設情境,引入概念。
nba籃球聯賽情景再現,利用世界男籃亞裔球星林書豪激勵學生相信自已能夠創造奇跡的勵志教育,感受數學來源于生活,調動學生順利引入新課。
2。觀察歸納,形成概念。
概念的教學,不糾纏于其語言本身,而是通過類比整合形成新的概念。由于學生對一元一次方程概念已經很了解,我主要采用了類比的方法,弱化概念的教學,強化對概念的正確理解,通過學案與課件相結合的方式,以題組形式分層漸進式訓練,讓學生明晰概念,鞏固概念,強化概念,提升能力。
3拓展延伸,深入概念。
知識的掌握,能力的提升是一個不斷循序上升的過程,而教學過程更是一個生動活沷,主動和富有個性的過程,讓學生認真聽講、積極思考,動腦動口,自主探索,合作交流。
4.當堂檢測,強化概念。
通過課堂隨機選題的形式答題,通過合作小組交流,全班展示交流,使學生互相學習、互相促進、互相競爭,將小組的認知成果轉化為全班同學的共同認知成果,從而營造寬松、民主、競爭、快樂的學習氛圍,讓學生體驗到學習的快樂,成功的喜悅,從而充分體現數學教學主要是學生數學活動教學的基本理念。
5.反思小結,回歸概念。
知識性內容的小結,可把課堂教學傳授的知識盡快化為學生的素質;數學思想方法的小結,可使學生更深刻地理解數學思想方法在解題中的地位和應用,培養學生形成完整的知識體系,養成及時反思的習慣。
美國國家研究委員會在《人人關心數學教育的未來》的報告中指出“沒有一個人能教好數學,好的教師不是在教數學,而是在激發學生自已去學數學”。只有學生通過自已的思考建立對數學的理解力,才能真正的學好數學。本節課,我致力于讓學生自已去發現數學,研究數學,加強數學思想、方法及科學研究方法的指導,引導學生不斷從“學會數學”到“會學數學”,但教無止境,課堂仍然留有遺憾,在今后的教學中,我將從這樣的三個方面加強對課堂的研究:
二是重視學生課堂的學習感受,營造民主、開放、合作、競爭的學習氛圍;;
三是提高教學機智、不斷創新優化教學方法,科學、合理、靈活地處理課堂上生成的問題。
八年級數學一次函數與二元一次方程組說課稿(專業14篇)篇五
作為一位不辭辛勞的人民教師,常常需要準備說課稿,借助說課稿可以更好地提高教師理論素養和駕馭教材的能力。我們該怎么去寫說課稿呢?以下是小編為大家整理的八年級數學一次函數與二元一次方程(組)說課稿,希望能夠幫助到大家。
各位評委、老師們:
大家好!
今天能有這個展示的機會,得到各位評委、老師的指導,感到非常榮幸、
基于以上對教學內容的理解,結合我所教學生的特點,我確定本節課教學目標為:
3.通過現實化的實際問題背景,反映祖國科技和經濟的發展、
本課的教學過程分為五個環節完成、首先請看“創設情境,提出問題”的教學過程、(插入錄像1)。
設計意圖:因為學生對剛學過的一次函數理解得還不夠透徹,有一定的畏難情緒,并且他們對一元一次方程、二元一次方程(組)和一元一次不等式都很熟悉,因而缺乏學習這部分內容的'熱情,或者只是機械地背記結論,所以我從本課引入部分,就力求能馬上吸引住學生。通過對一道七年級課本中曾經解決過的問題的再認識,使學生在認知上形成沖突,從而產生學習新知的需要;接著我設計了一個師生互動的游戲,使學生對老師是怎么迅速判斷出方程組解的情況產生了強烈的好奇心,從而有了學習新知的強烈愿望、(插入錄像2)。
1、進入新知的學習,我首先通過一段視頻為學生創設了一個貫穿整節課的問題情境,使學生始終在倍感新鮮的環境中進行學習、本課新知由兩部分構成,一是研究一次函數與二元一次方程的關系,二是研究一次函數與二元一次方程組的關系,下面請看第一部分的教學過程、(插入錄像3)。
為了幫助學生加深對所學內容的理解,我設計了下面的例題、(插入錄像5)。
下面請看第四個環節“解決問題,加深認識”的教學過程、(插入錄像6)。
這就是我對這節課的教學設計,其中難免有很多不足之處,真誠的希望得到各位老師的批評指正,以使我在今后的教學中加以改進、謝謝!
八年級數學一次函數與二元一次方程組說課稿(專業14篇)篇六
知識與技能。
(2)掌握二元一次方程組和對應的兩條直線之間的關系;
(2)通過“做一做”引入例1,進一步發展學生數形結合的意識和能力。
(1)在探究二元一次方程和一次函數的對應關系中,在體會近似解與準確解中,培養學生勤于思考、精益求精的精神。
(2)在經歷同一數學知識可用不同的數學方法解決的過程中,培養學生的創新意識和變式能力。
數形結合和數學轉化的思想意識。
教具:多媒體課件、三角板。
學具:鉛筆、直尺、練習本、坐標紙。
第一環節:設置問題情境,啟發引導(5分鐘,學生回答問題回顧知識)。
內容:
1、方程x+y=5的解有多少個?是這個方程的解嗎?
2、點(0,5),(5,0),(2,3)在一次函數y=的圖像上嗎?
3、在一次函數y=的圖像上任取一點,它的坐標適合方程x+y=5嗎?
4、以方程x+y=5的解為坐標的所有點組成的圖像與一次函數y=的圖像相同嗎?
由此得到本節課的第一個知識點:
(1)以二元一次方程的解為坐標的點都在相應的函數圖像上;
(2)一次函數圖像上的點的坐標都適合相應的二元一次方程。
第二環節自主探索方程組的解與圖像之間的關系(10分鐘,教師引導學生解決)。
內容:
1、解方程組。
2、上述方程移項變形轉化為兩個一次函數y=和y=2x,在同一直角坐標系內分別作出這兩個函數的圖像。
(1)求二元一次方程組的解可以轉化為求兩條直線的交點的橫縱坐標;
(2)求兩條直線的交點坐標可以轉化為求這兩條直線對應的函數表達式聯立的二元一次方程組的解。
(3)解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種。
注意:利用圖像法求二元一次方程組的解是近似解,要得到準確解,一般還是用代入消元法和加減消元法解方程組。
第三環節典型例題(10分鐘,學生獨立解決)。
探究方程與函數的相互轉化。
內容:例1用作圖像的方法解方程組。
例2如圖,直線與的交點坐標是。
第四環節反饋練習(10分鐘,學生解決全班交流)。
內容:
1、已知一次函數與的圖像的交點為,則。
2、已知一次函數與的圖像都經過點a(—2,0),且與軸分別交于b,c兩點,則的面積為()。
(a)4(b)5(c)6(d)7。
3、求兩條直線與和軸所圍成的三角形面積。
4、如圖,兩條直線與的交點坐標可以看作哪個方程組的解?
第五環節課堂小結(5分鐘,師生共同總結)。
內容:以“問題串”的形式,要求學生自主總結有關知識、方法:
1、二元一次方程和一次函數的圖像的'關系;
(1)以二元一次方程的解為坐標的點都在相應的函數圖像上;
(2)一次函數圖像上的點的坐標都適合相應的二元一次方程。
2、方程組和對應的兩條直線的關系:
(1)方程組的解是對應的兩條直線的交點坐標;
(2)兩條直線的交點坐標是對應的方程組的解;
(1)代入消元法;
(2)加減消元法;
(3)圖像法,要強調的是由于作圖的不準確性,由圖像法求得的解是近似解。
第六環節作業布置。
習題7.7a組(優等生)1、2、3b組(中等生)1、2c組1、2。
附:板書設計。
八年級數學一次函數與二元一次方程組說課稿(專業14篇)篇七
情感態度:在探究活動中培養學生嚴謹的科學態度和勇于探索的科學精神,在師生、生生的交流活動中,學會與人合作,學會傾聽、欣賞和感悟,體驗數學的價值,建立自信心。
教學重難點。
難點:綜合運用方程(組)、不等式和函數的知識解決實際問題。
教學過程。
(一)引入新課。
學生已經學習過列方程(組)解應用題,因此可能列出一元一次方程或二元一次方程組,用方程模型解決問題。結合前面對一次函數與一元一次方程、一元一次不等式之間關系的探究,我自然地提出問題:一次函數與二元一次方程組之間是否也有聯系呢?,從而揭示課題。
(二)進行新課。
填空:二元一次方程可以轉化為________。
(3)是否直線上任意一點的坐標都是它所對應的二元一次方程的解?
此時教師留給學生充分探索交流的時間與空間,對學生可能出現的疑問給予幫助,師生共同歸納出:從形的角度看,解方程組相當于確定兩條直線交點的坐標。
進一步歸納出:從數的角度看,解方程組相當于考慮自變量為何值時兩個函數的值相等,以及這個函數值是何值。
3、列一元二次不等式。
解法1:設上網時間為分,若按方式a則收元;若按方式b則收元。然后在同一坐標系中分別畫出這兩個函數的圖象,計算出交點坐標,結合圖象,利用直線上點位置的高低直觀地比較函數值的大小,得到當一個月內上網時間少于400分時,選擇方式a省錢;當上網時間等于400分時,選擇方式a、b沒有區別;當上網時間多于400分時,選擇方式b省錢。
解法2:設上網時間為分,方式b與方式a兩種計費的差額為元,得到一次函數:,即,然后畫出函數的圖象,計算出直線與軸的交點坐標,類似地用點位置的高低直觀地找到答案。
注意:所畫的函數圖象都是射線。
4、習題。
(1)、以方程的解為坐標的所有點都在一次函數_____的圖象上。
(2)、方程組的解是________,由此可知,一次函數與的圖象必有一個交點,且交點坐標是________。
5、旅游問題。
古城荊州歷史悠久,文化燦爛。
八年級數學一次函數與二元一次方程組說課稿(專業14篇)篇八
張老師《一次函數》一課,創設了有利于調動學生學習興趣和激發求知欲的多種情景,展現了有利于培養學生學習態度和對數學自主學習能力的教學策略,探索怎樣恰當進行概念教學。張老師的課思路清晰,語言精煉、準確,重點突出。既有充分利用學案導學,又有個人的創新、獨到之處,把教學過程變成學生對知識的探索過程,取得了良好的教學效果。
學生在解決一次函數的.定義問題時,往往忽視了正比例函數是一次函數的特殊形式,張老師在教學中強調一次函數與正比例函數的關系,并通過實例來說明,加強二者之間的聯系。如講解例題y=,讓學生探討當這個函數分別是一次函數,正比例函數時k應滿足的條件,把一次函數與正比例函數的區別與聯系很好的闡述清楚,相信學生再解決一次函數的定義問題時就不會漏掉正比列關系的可能性。
課堂中的每個環節,無論是例題、練習題、習題的處理,張老師充分放手讓學生自己動手,動口,老師只引導點撥,善于啟發學生,使學生主動獲取知識,在潛移默化中領悟知識,使學生完全成為課堂主人,達到知識學習與能力培養的統一。教學過程中注意了與學生的溝通,有較強的駕馭課堂的能力。
一點建議:本節課是否可以把訓練目標再拓寬一點,除了強化一次函數與正比例函數的聯系,適當延伸自變量取值范圍和函數值的確定,加強對一次函數式的理解,為下節學習一次函數圖像做好鋪墊。
八年級數學一次函數與二元一次方程組說課稿(專業14篇)篇九
函數、方程和不等式都是人們刻畫現實世界的重要數學模型。用函數的觀點看方程(組)與不等式,使學生不僅能加深對方程(組)、不等式的理解,提高認識問題的水平,而且能從函數的角度將三者統一起來,感受數學的統一美。本節課是學生學習完一次函數、一元一次方程及一元一次不等式的聯系后對一次函數和二元一次方程(組)關系的探究,學生在探索過程中體驗數形結合的思想方法和數學模型的應用價值,這對今后的學習有著十分重要的意義。
2、教學重難點。
難點:綜合運用方程(組)、不等式和函數的知識解決實際問題。
3、教學目標。
解決問題:能綜合應用一次函數、一元一次方程、一元一次不等式、二元一次方程(組)解決相關實際問題。
情感態度:在探究活動中培養學生嚴謹的科學態度和勇于探索的科學精神,在師生、生生的交流活動中,學會與人合作,學會傾聽、欣賞和感悟,體驗數學的價值,建立自信心。
二、教法說明。
對于認知主體學生來說,他們已經具備了初步探究問題的能力,但是對知識的.主動遷移能力較弱,為使學生更好地構建新的認知結構,促進學生的發展,我將在教學中采用探究式教學法。以學生為中心,使其在生動活潑、民主開放、主動探索的氛圍中愉快地學習。
三、教學過程。
(一)感知身邊數學。
學生已經學習過列方程(組)解應用題,因此可能列出一元一次方程或二元一次方程組,用方程模型解決問題。結合前面對一次函數與一元一次方程、一元一次不等式之間關系的探究,我自然地提出問題:一次函數與二元一次方程組之間是否也有聯系呢?,從而揭示課題。
[設計意圖]建構主義認為,在實際情境中學習可以激發學生的學習興趣。因此,用上網收費這一生活實際創設情境,并用問題啟發學生去思、鼓勵學生去探、激勵學生去說,努力給學生造成心求通而未能得,口欲言而不能說的情勢,從而喚起學生強烈的求知欲,使他們以躍躍欲試的姿態投入到探索活動中來。
(二)享受探究樂趣。
[設計意圖]用一連串的問題引導學生發現一次函數與二元一次方程在數與形兩個方面的關系,為探索二元一次方程組的解與直線交點坐標的關系作好鋪墊。
[設計意圖]學生經過自主探索、合作交流,從數和形兩個角度認識一次函數與二元一次方程組的關系,真正掌握本節課的重點知識,從而在頭腦中再現知識的形成過程,避免單純地記憶,使學習過程成為一種再創造的過程。此時教師及時對學生進行鼓勵,充分肯定學生的探究成果,關注學生的情感體驗。
(三)乘坐智慧快車。
[設計意圖]為培養學生的發散思維和規范解題的習慣,引導學生將上網問題延伸為例題,并用問題:你家選擇的上網收費方式好嗎?再次激起學生強烈的求知欲望和主人翁的學習姿態。通過此問題的探究,使學生有效地理解本節課的難點,體會數形結合這一思想方法的應用。
(四)體驗成功喜悅。
1、搶答題。
2、旅游問題。
[設計意圖]抓住學生對競爭充滿興趣的心理特征,用搶答題使學生的眼、耳、腦、口得到充分的調動,并在搶答中品味成功的快樂,提高思維的速度。在學生感興趣的旅游問題中,進一步培養學生應用數學的意識,更好地促進學生對本節課難點的理解和應用,幫助學生不斷完善新的認知結構。
(五)分享你我收獲。
在課堂臨近尾聲時,向學生提出:通過今天的學習,你有什么收獲?你印象最深的是什么?
[設計意圖]培養學生歸納和語言表達能力,鼓勵學生從數學知識、數學方法和數學情感等方面進行自我評價。
(六)開拓嶄新天地。
1、數學日記。
2、布置作業。
[設計意圖]新課程強調發展學生數學交流的能力,用數學日記給學生提供一種表達數學思想方法和情感的方式,以體現評價體系的多元化,并使學生嘗試用數學的眼睛觀察事物,體驗數學的價值。作業由必做題和選做題組成,體現分層教學,讓不同的人在數學上得到不同的發展。
四、教學設計反思。
1、貫穿一個原則以學生為主體的原則。
2、突出一個思想數形結合的思想。
3、體現一個價值數學建模的價值。
4、滲透一個意識應用數學的意識。
八年級數學一次函數與二元一次方程組說課稿(專業14篇)篇十
20xx年12月9日,我有幸聆聽的昆侖中學王小平老師講的《反比例函數的圖象及性質》。聽后感覺頗受啟發。
《反比例函數的圖象及性質》是九年級數學教材中的重點內容,也是難點所在,它安排在了學生理解反比例函數的意義并掌握了描點法畫函數圖象的基礎上進行教學。
王老師這節課的優點有以下幾個方面:
1、教態大方,教學語言科學規范,簡約明了,語速始終,具有啟發性。
2、知識的細節方面強調到位,。
3、注重了學生動手操作能力的培養,并對圖象形狀讓個別學生進行了交流。
4、教師基本功扎實,板書整齊大方。
最后我說一下我對這節課的一些想法:
1、王老師應該將本節課的內容比例再協調一下,將畫圖的時間減少一些,重點放在引導學生總結反比例函數的性質上來,可以嘗試讓學生課前做幾個圖,降低作圖帶來的時間差。
2、學生參與課堂較少,練習題的設置沒有層次性。
以上只是我的個人看法,說的不對的地方請批評指正。
八年級數學一次函數與二元一次方程組說課稿(專業14篇)篇十一
1、創設情境,營造課堂氛圍,激發學生的創造潛能。
2、適時設疑,激發學生的學習興趣,促進學生的思維能力。
3、打破常規,養成同學們預習的習慣,培養學生的自習能力。
總之,在教學過程中,我始終注意發揮學生的主體作用。讓學生通過自主,探究,合作學習來主動發現結論,實現師生互動,同時,我也認識到教師不僅要教給學生知識,更重要是培養學生良好的數學素養和學習習慣,讓學生學會學習,這樣才能使自己真正成為一名受學生歡迎的教師。
八年級數學一次函數與二元一次方程組說課稿(專業14篇)篇十二
本節課安排了兩個內容:一是探索一次函數與二元一次方程(組)的關系,這是本節的重點;二是綜合運用函數與方程、不等式的關系解決簡單的實際問題,這是本節的難點。
教師先讓學生把一個具體的二元一次方程轉化成一次函數,再通過畫圖來揭示二元一次方程與一次函數之間的關系,然后在同一坐標系中畫出另一條直線,觀察、思考得到二元一次方程組與一次函數之間的關系,進而得到二元一次方程組的解與兩條直線交點坐標之間的關系,這些都為從函數的觀點認識解方程組作好了鋪墊。學生經歷了前面的探究學習后,很自然從“形”的角度來認識解方程組。為了幫助學生從“數”的角度來認識解方程組,教師設計一個練習,先讓學生體驗再引導學生歸納結論,使學生的思維活躍起來。這種呈現知識的形式符合學生的認知規律。
在例題的教學中,教師引導學生分析題意,建立函數模型,然后讓學生討論交流比較大小的方法.對于利用圖象比較大小的兩種方法,第一種是教師讓學生獨立畫圖,分析比較,然后強調自變量的取值范圍;對于第二種方法,教師著重引導學生作差得到一個新函數,并把要解決的`問題設計成填空的形式,讓學生結合畫圖分析完成。
這節課較好地體現了教材的編寫意圖,結合實際,不誤時機地對學生進行“數形結合”思想方法的教學,并讓學生在動口、動手、動腦的過程中體會四個“一次”之間的關系。教師注重知識形成過程的教學,突出學生活動這條主線,多媒體輔助教學應用自然,師生互動、生生互動,較好地體現了“以人為本”的教學理念。
八年級數學一次函數與二元一次方程組說課稿(專業14篇)篇十三
本節內容共安排2個課時完成。該節內容是二元一次方程(組)與一次函數及其圖像的綜合應用。通過探索方程與函數圖像的關系,培養學生數學轉化的思想,通過二元一次方程方程組的圖像解法,使學生初步建立了數(二元一次方程)與形(一次函數的圖像(直線))之間的對應關系,進一步培養了學生數形結合的意識和能力。本節要注意的是由兩條直線求交點,其交點的橫縱坐標為二元一次方程組的近似解,要得到準確的結果,應從圖像中獲取信息,確立直線對應的函數表達式即方程,再聯立方程應用代數方法求解,其結果才是準確的。
二、學情分析。
學生已有了解方程(組)的基本能力和一次函數及其圖像的基本知識,學習本節知識困難不大,關鍵是讓學生理解二元一次方程和一次函數之間的內在聯系,體會數和形間的相互轉化,從中使學生進一步感受到數的問題可以通過形來解決,形的問題也可以通過數來解決。
三、目標分析。
1、教學目標。
知識與技能目標。
(1)初步理解二元一次方程和一次函數的關系;
(2)掌握二元一次方程組和對應的兩條直線之間的關系;
過程與方法目標。
(2)通過做一做引入例1,進一步發展學生數形結合的意識和能力。
(3)情感與態度目標。
(1)在探究二元一次方程和一次函數的對應關系中,在體會近似解與準確解中,培養學生勤于思考、精益求精的精神。
(2)在經歷同一數學知識可用不同的數學方法解決的過程中,培養學生的創新意識和變式能力。
2。教學重點。
(1)二元一次方程和一次函數的關系;
(2)二元一次方程組和對應的兩條直線的關系。
3。教學難點。
數形結合和數學轉化的思想意識。
四、教法學法。
1、教法學法。
啟發引導與自主探索相結合。
2、課前準備。
教具:多媒體課件、三角板。
學具:鉛筆、直尺、練習本、坐標紙。
五、教學過程。
本節課設計了六個教學環節:第一環節設置問題情境,啟發引導;第二環節自主探索,建立方程與函數圖像的模型;第三環節典型例題,探究方程與函數的相互轉化;第四環節反饋練習;第五環節課堂小結;第六環節作業布置。
第一環節:設置問題情境,啟發引導。
內容:1、方程x+y=5的解有多少個?是這個方程的解嗎?
2、點(0,5),(5,0),(2,3)在一次函數y=的圖像上嗎?
3、在一次函數y=的圖像上任取一點,它的坐標適合方程x+y=5嗎?
4、以方程x+y=5的解為坐標的`所有點組成的圖像與一次函數y=的圖像相同嗎?
由此得到本節課的第一個知識點:
二元一次方程和一次函數的圖像有如下關系:
(1)以二元一次方程的解為坐標的點都在相應的函數圖像上;
意圖:通過設置問題情景,讓學生感受方程x+y=5和一次函數y=相互轉化,啟發引導學生總結二元一次方程與一次函數的對應關系。
效果:以問題串的形式,啟發引導學生探索知識的形成過程,培養了學生數學轉化的思想意識。
前面研究了一個二元一次方程和相應的一個一次函數的關系,現在來研究兩個二元一次方程組成的方程組和相應的兩個一次函數的關系。順其自然進入下一環節。
第二環節自主探索方程組的解與圖像之間的關系。
內容:
1、解方程組。
2、上述方程移項變形轉化為兩個一次函數y=和y=2x,在同一直角坐標系內分別作出這兩個函數的圖像。
(1)求二元一次方程組的解可以轉化為求兩條直線的交點的橫縱坐標;
(2)求兩條直線的交點坐標可以轉化為求這兩條直線對應的函數表達式聯立的二元一次方程組的解。
(3)解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種。
注意:利用圖像法求二元一次方程組的解是近似解,要得到準確解,一般還是用代入消元法和加減消元法解方程組。
意圖:通過自主探索,使學生初步體會數(二元一次方程)與形(兩條直線)之間的對應關系,為求兩條直線的交點坐標打下基礎。
效果:由學生自主學習,十分自然地建立了數形結合的意識,學生初步感受到了數的問題可以轉化為形來處理,反之形的問題可以轉化成數來處理,培養了學生的創新意識和變式能力。
第三環節典型例題。
探究方程與函數的相互轉化。
內容:例1用作圖像的方法解方程組。
例2如圖,直線與的交點坐標是。
意圖:設計例1進一步揭示數的問題可以轉化成形來處理,但所求解為近似解。通過例2,讓學生深刻感受到由形來處理的困難性,由此自然想到求這兩條直線對應的函數表達式,把形的問題轉化成數來處理。這兩例充分展示了數形結合的思想方法,為下一課時解決實際問題作了很好的鋪墊。
效果:進一步培養了學生數形結合的意識和能力,充分展示了方程與函數的相互轉化。
第四環節反饋練習。
內容:
1、已知一次函數與的圖像的交點為,則。
2、已知一次函數與的圖像都經過點a(2,0),且與軸分別交于b,c兩點,則的面積為()。
(a)4(b)5(c)6(d)7。
3、求兩條直線與和軸所圍成的三角形面積。
4、如圖,兩條直線與的交點坐標可以看作哪個方程組的解?
意圖:4個練習,意在及時檢測學生對本節知識的掌握情況。
效果:加深了兩條直線交點的坐標就是對應的函數表達式所組成的方程組的解的印象,培養了學生的計算能力和數學轉化的能力,使學生進一步領悟到應用數形結合的思想方法解題的重要性。
第五環節課堂小結。
內容:以問題串的形式,要求學生自主總結有關知識、方法:
1、二元一次方程和一次函數的圖像的關系;
(1)以二元一次方程的解為坐標的點都在相應的函數圖像上;
2、方程組和對應的兩條直線的關系:
(1)方程組的解是對應的兩條直線的交點坐標;
(2)兩條直線的交點坐標是對應的方程組的解;
(1)代入消元法;
(2)加減消元法;
(3)圖像法。要強調的是由于作圖的不準確性,由圖像法求得的解是近似解。
意圖:旨在使本節課的知識點系統化、結構化,只有結構化的知識才能形成能力;使學生進一步明確學什么,學了有什么用。
第六環節作業布置。
習題7。7。
附:板書設計。
六、教學反思。
本節課在學生已有了解方程(組)的基本能力和一次函數及其圖像的基本知識的基礎上,通過教師啟發引導和學生自主學習探索相結合的方法,進一步揭示了二元一次方程和函數圖像之間的對應關系,從而引出了二元一次方程組的圖像解法,以及應用代數方法解決有關圖像問題,培養了學生數形結合的意識和能力,充分展示了方程與函數的相互轉化。教學過程中教師一定要講清楚圖像解法的局限性,這是由于畫圖的不準確性,所求的解往往是近似解。因此為了準確地解決有關圖像問題常常把它轉化為代數問題來處理,如例2及反饋練習中的4個問題。
八年級數學一次函數與二元一次方程組說課稿(專業14篇)篇十四
1、會列二元一次方程組解簡單的應用題并能檢驗結果的合理性。
2、提高分析問題、解決問題的能力。
3、體會數學的應用價值。
教學重點。
教學難點。
1、找實際問題中的相等關系。
2、徹底理解題意。
教學過程。
一、引入。
二、新課。
探究:
1、你能畫線段表示本題的數量關系嗎?
2、填空:(用含s、v的代數式表示)。
設小琴速度是v千米/時,她家與外祖母家相距s千米,第二天她走2小時趟的路程是______千米。此時她離家距離是______千米;她走5小時走的路程是______千米,此時她離家的距離是________千米。
3、列方程組。
4、解方程組。
5、檢驗寫出答案。
討論:本題是否還有其它解法?
三、練習。
1、建立方程模型。
2、p38練習第2題。
3、小組合作編應用題:兩個寫一方程組,另兩人根據方程組編應用題。
四、小結。
本節課你有何收獲?