作為一位杰出的老師,編寫教案是必不可少的,教案有助于順利而有效地開展教學(xué)活動。那么問題來了,教案應(yīng)該怎么寫?那么下面我就給大家講一講教案怎么寫才比較好,我們一起來看一看吧。
平面位置對應(yīng)教案反思篇一
這一節(jié)主要學(xué)習(xí)了圓和圓的位置關(guān)系,通過新的教學(xué)改革,學(xué)生分組學(xué)習(xí)的積極性提高了,學(xué)案的運(yùn)用學(xué)生慢慢適應(yīng),并且起到了很好的作用。
通過預(yù)習(xí)學(xué)案,學(xué)生提前預(yù)習(xí),然后結(jié)合實際生活中的例子,包括兩圓外離、內(nèi)含、相交、外切、內(nèi)切、同心圓等不同情況,讓學(xué)生對于兩圓的位置關(guān)系有直觀感受,然后探究和發(fā)現(xiàn)圖形的位置關(guān)系與圓的半徑、圓心距的大小有關(guān),并完成學(xué)案的部分填表和習(xí)題,從而加深對三種不同位置的理解。
但是,對于我班的實際情況,基礎(chǔ)差得同學(xué)很多,有幾個學(xué)生甚至放棄了數(shù)學(xué),針對這種情況,設(shè)計了一些適合他們的練習(xí)題,讓他們找回學(xué)數(shù)學(xué)的信心,好些的同學(xué)做些難度大些的題著重讓學(xué)生通過一定量的訓(xùn)練,應(yīng)用所學(xué)的.知識解決問題,從而加深理解課堂上所學(xué)的重難點(diǎn)。學(xué)生的學(xué)習(xí)積極性大大的提高了,并且大部分學(xué)生當(dāng)堂達(dá)標(biāo),效果很好。
以后應(yīng)好好總結(jié)經(jīng)驗,繼續(xù)加強(qiáng)這方面的訓(xùn)練,相信一定會有好的效果。
平面位置對應(yīng)教案反思篇二
1.由日落的三張照片(太陽與地平線相離、相切、相交)引入,學(xué)生比較感興趣,充分感受生活中反映直線與圓位置關(guān)系的現(xiàn)象,體驗到數(shù)學(xué)來源于實踐。對生活中的數(shù)學(xué)問題發(fā)生好奇,這是學(xué)生最容易接受的學(xué)習(xí)數(shù)學(xué)的好方法。新課標(biāo)下的數(shù)學(xué)教學(xué)的基本特點(diǎn)之一就是密切關(guān)注數(shù)學(xué)與現(xiàn)實生活的聯(lián)系,從生活中“找”數(shù)學(xué),“想”數(shù)學(xué),讓學(xué)生真正感受到生活之中處處有數(shù)學(xué)。
2.在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,我先引導(dǎo)學(xué)生回顧點(diǎn)和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生運(yùn)用類比的思想來思考問題,解決問題,學(xué)生很輕松的就能夠得出結(jié)論,從而突破本節(jié)課的難點(diǎn),使學(xué)生充分理解位置關(guān)系與數(shù)量關(guān)系的相互轉(zhuǎn)化,這種等價關(guān)系是研究切線的理論基礎(chǔ),從而為下節(jié)課探索切線的性質(zhì)打好基礎(chǔ)。
3.新課標(biāo)下的數(shù)學(xué)強(qiáng)調(diào)人人學(xué)有價值的數(shù)學(xué),人人學(xué)有用的數(shù)學(xué),為此,在做一做之后我安排了一道實際問題:“經(jīng)過兩村莊的筆直公路會不會穿越一個圓形的森林公園?”培養(yǎng)學(xué)生解決實際問題的能力。由于此題要學(xué)生回到生活中去運(yùn)用數(shù)學(xué),學(xué)生的積極性高漲,都急著討論解決方案,是乏味的數(shù)學(xué)學(xué)習(xí)變得有滋有味,使學(xué)生體會到學(xué)數(shù)學(xué)的重要性,體驗“生活中處處用數(shù)學(xué)”。
同時,我也感覺到本節(jié)課的設(shè)計有不妥之處,主要有以下三點(diǎn):
1.學(xué)生觀察得到直線和圓的三種位置關(guān)系后,是由我講解的三個概念:相交、相切、相離。學(xué)生被動的接受,對概念的理解不是很深刻,可以改為讓學(xué)生下定義,師生共同討論的形式給學(xué)生以思維想象的空間,充分調(diào)動學(xué)生的積極性,使學(xué)生實現(xiàn)自主探究。
2.雖然我在設(shè)計本節(jié)課時是體現(xiàn)讓學(xué)生自主操作探究的原則,但在讓學(xué)生探索直線和圓三種位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,沒有給予學(xué)生足夠的探索、交流的時間,限制了學(xué)生的思維。此處應(yīng)充分發(fā)揮小組的特點(diǎn),讓學(xué)生相互啟發(fā)討論,形成思維互補(bǔ),集思廣益,從而使概念更清楚,結(jié)論更準(zhǔn)確。
平面位置對應(yīng)教案反思篇三
新課標(biāo)指出,自主探究,動手實踐,合作交流應(yīng)成為學(xué)生的主要學(xué)習(xí)方式,教師應(yīng)引導(dǎo)學(xué)生主動地從事觀察‘實驗’猜測、驗證、推理與交流等數(shù)學(xué)活動,使學(xué)生形成自己對數(shù)學(xué)知識的理解和有效的'學(xué)習(xí)策略。學(xué)生在前面已學(xué)習(xí)了點(diǎn)與圓、直線與圓的位置關(guān)系,已獲得了探究此類問題的方法,因此在本節(jié)教學(xué)中讓學(xué)生動手操作,自主探究,設(shè)計表格讓學(xué)生探究完成,有目的、有思考。
本節(jié)課有以下幾個特點(diǎn):
1.圓與圓的位置關(guān)系特別是相交關(guān)系理解有一定難度,教學(xué)時借助多媒體動態(tài)演示,以幫助理解。
2.借助圖形變換思想,研究圖形的對稱性。
3.利用生活中的數(shù)學(xué)引入本節(jié)內(nèi)容。
需改進(jìn)之處:教材之外內(nèi)容少補(bǔ)充,大膽放開,把概念的形成過程、方法的探索過程,結(jié)論的推導(dǎo)過程、公式定理的歸納過程等充分暴露在學(xué)生面前,讓學(xué)生的學(xué)習(xí)過程成為自己探索和發(fā)現(xiàn)的過程,真正成為認(rèn)知的主體,增強(qiáng)求知欲,從而提高學(xué)習(xí)能力.
平面位置對應(yīng)教案反思篇四
這節(jié)課,我由生活中的情景——日落引入,讓學(xué)生發(fā)現(xiàn)地平線和太陽位置關(guān)系的變化,從而引出課題:直線和圓的位置關(guān)系。然后由學(xué)生平移直尺,自主探索發(fā)現(xiàn)直線和圓的三種位置關(guān)系,給出定義,聯(lián)系實際,由學(xué)生發(fā)現(xiàn)日常生活中存在的直線和圓相交、相切、相離的現(xiàn)象,緊接著引導(dǎo)學(xué)生探索三種位置關(guān)系下圓心到直線的距離與圓半徑的大小關(guān)系,由“做一做”進(jìn)行應(yīng)用,最后去解決實際問題。通過本節(jié)課的教學(xué),我認(rèn)為成功之處有以下幾點(diǎn):
1。由日落引入,學(xué)生比較感興趣,充分感受生活中反映直線與圓位置關(guān)系的現(xiàn)象,體驗到數(shù)學(xué)來源于實踐。對生活中的數(shù)學(xué)問題發(fā)生好奇,這是學(xué)生最容易接受的學(xué)習(xí)數(shù)學(xué)的好方法。新課標(biāo)下的數(shù)學(xué)教學(xué)的基本特點(diǎn)之一就是密切關(guān)注數(shù)學(xué)與現(xiàn)實生活的聯(lián)系,從生活中“找”數(shù)學(xué),“想”數(shù)學(xué),讓學(xué)生真正感受到數(shù)學(xué)無處不在,無時不有。
2。在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,讓學(xué)生回顧點(diǎn)和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生運(yùn)用類比的思想來思考問題,解決問題,學(xué)生很輕松的就能夠得出結(jié)論,從而突破本節(jié)課的難點(diǎn),使學(xué)生充分理解位置關(guān)系與數(shù)量關(guān)系的相互轉(zhuǎn)化,這種等價關(guān)系是研究切線的理論基礎(chǔ),從而為下節(jié)課探索切線的性質(zhì)打好基礎(chǔ)。
3。新課標(biāo)下的數(shù)學(xué)強(qiáng)調(diào)人人學(xué)有價值的數(shù)學(xué),人人學(xué)有用的數(shù)學(xué),為此,在做一做之后我安排了一道實際問題:“經(jīng)過兩村莊的筆直公路會不會穿越一個圓形的森林公園?”培養(yǎng)學(xué)生解決實際問題的能力。由于此題要學(xué)生回到生活中去運(yùn)用數(shù)學(xué),學(xué)生的積極性高漲,都急著討論解決方案,是乏味的數(shù)學(xué)學(xué)習(xí)變得有滋有味,使學(xué)生體會到學(xué)數(shù)學(xué)的重要性,體驗“生活中處處用數(shù)學(xué)”。
平面位置對應(yīng)教案反思篇五
本節(jié)課研究圓與圓的位置關(guān)系,重點(diǎn)是研究兩圓位置關(guān)系的判斷方法,并應(yīng)用這些方法解決有關(guān)的實際問題。《圓與圓的位置關(guān)系》在舊教材中比重不大,但是在新課標(biāo)中,被作為一個獨(dú)立的章節(jié),說明新課標(biāo)對這一章節(jié)的要求已經(jīng)有所提高。教材是在初中平面幾何對圓與圓的位置關(guān)系的初步分析的基礎(chǔ)上得到圓與圓的位置關(guān)系的判斷方法,北師大版教材中著重強(qiáng)調(diào)了根據(jù)圓心到直線的距離與圓的半徑的關(guān)系進(jìn)行判斷,對用方程的思想去處理位置關(guān)系沒作要求,但用方程的思想來解決幾何問題是解析幾何的精髓,是平面幾何問題的深化,它將是以后處理圓錐曲線的基本方法,因此,我增加了用方程的思想來分析位置關(guān)系,這樣有利于培養(yǎng)學(xué)生數(shù)形結(jié)合、經(jīng)歷幾何問題代數(shù)化等解析幾何思想方法及辯證思維能力,其基本思維方法和解決問題的技巧在今后整個圓錐曲線的學(xué)習(xí)中有著非常重要的意義。
作為解析幾何的一堂課,判斷圓與圓的位置關(guān)系,體現(xiàn)的正是解析幾何的思想:用方程處理幾何問題,用幾何方法研究方程性質(zhì)。所以我在教材處理上,對判斷兩圓位置關(guān)系用了方程的思想和幾何兩種方法,兩種方法貫穿始終,使學(xué)生對解析幾何的本質(zhì)有所了解。
下面是我在設(shè)計這堂課時的一些想法。
第一,學(xué)生學(xué)習(xí)新知識必須在已有知識和經(jīng)驗的基礎(chǔ)上自主建構(gòu)與形成。所以,我一開始便提出了三個問題,即復(fù)習(xí)此節(jié)相關(guān)的知識點(diǎn),通過問題解決,以舊引新,提出新的問題,以類比的方法研究圓與圓的位置關(guān)系。配合幾何畫板的動畫演示,啟發(fā)學(xué)生思考當(dāng)初是怎樣研究判斷直線與圓的位置關(guān)系的方法?這種方法是不是同樣可以運(yùn)用到研究圓與圓的位置關(guān)系上來?能不能用來判斷圓與圓的位置關(guān)系?使學(xué)生很自然地從直線與圓的位置關(guān)系的判斷方法類比到圓與圓的位置關(guān)系的判斷方法。
第二,新的課程標(biāo)準(zhǔn)非常重視學(xué)生的自主探究,這是學(xué)習(xí)方式的一次革命,老師的教授過程固然重要,但學(xué)生對知識的掌握是在學(xué)生自己對知識有體驗、有獨(dú)立的思考和探討的基礎(chǔ)上,才能成為可能。所謂“學(xué)在講之前,講在關(guān)鍵處”,學(xué)生先有一個對知識的認(rèn)識過程,老師再在關(guān)鍵處進(jìn)行講解,使學(xué)生真正完成對知識感知、形成和鞏固的過程,才是對知識最好的吸收。
第三,學(xué)生的學(xué)習(xí)是在教師引導(dǎo)下的有目的`的學(xué)習(xí),從而教學(xué)的過程就是在教師控制下的學(xué)生自主學(xué)習(xí)和合作探究學(xué)習(xí)的過程,這個過程中的關(guān)鍵點(diǎn)是怎么樣有效地控制學(xué)生自主學(xué)習(xí)和合作探究學(xué)習(xí)的時間和空間,在教學(xué)的過程中,我較好地處理了學(xué)生學(xué)習(xí)的空間與時間,既留給學(xué)生充分思考與探索的時間與空間,又嚴(yán)格限定時間,由此培養(yǎng)學(xué)生思維的敏捷性,提高課堂效率。
解決問題的程序。
對于問題探究的題型選擇的一些思考:第一個問題研究,側(cè)重點(diǎn)之一是必須注意到相切的兩種位置關(guān)系:內(nèi)切與外切;側(cè)重點(diǎn)之二在于如何找到這兩個圓的圓心,是為了讓學(xué)生回顧兩相切圓心與切點(diǎn)在同一直線上這一條性質(zhì),由此得到圓心坐標(biāo)。第二個問題研究是研究一個半徑變化的圓與定圓相切,求題中參數(shù)變化的問題,這道題中同樣要注意的是相切的兩種情況,并且對于內(nèi)切,要充分結(jié)合數(shù)形結(jié)合的思想,判斷出兩圓的半徑大小關(guān)系。兩題都有一定難度,處理時必須牢牢掌握知識,靈活運(yùn)用。
上完這堂課有幾個值得反思的問題:
2.時間把握。課前復(fù)習(xí)是有必要的,是為了學(xué)生類比舊知識,聯(lián)想新知識,但復(fù)習(xí)舊知識的時間應(yīng)該限定在三分鐘以內(nèi),復(fù)習(xí)時間長會導(dǎo)致鞏固練習(xí)的時間不足和問題展開不夠充分。
3.限時訓(xùn)練。限時訓(xùn)練的目的是為了讓學(xué)生更有效率地做題,限定時間過長或是過短都不利于學(xué)生提高數(shù)學(xué)能力,這點(diǎn)還有待研究。