在日常的學(xué)習(xí)、工作、生活中,肯定對各類范文都很熟悉吧。范文怎么寫才能發(fā)揮它最大的作用呢?下面我給大家整理了一些優(yōu)秀范文,希望能夠幫助到大家,我們一起來看一看吧。
數(shù)學(xué)建模論文篇一
從現(xiàn)實(shí)現(xiàn)象到數(shù)學(xué)模型 .....................................................................................................................
數(shù)學(xué)建模的相關(guān)基本概念 ............................................................................. 錯誤!未定義書簽。
…… …… 余下全文
數(shù)學(xué)建模論文篇二
通過對高中數(shù)學(xué)新教材的教學(xué),結(jié)合新教材的編寫特點(diǎn)和高中研究性學(xué)習(xí)的開展,對如何加強(qiáng)高中數(shù)學(xué)建模教學(xué),培養(yǎng)學(xué)生的創(chuàng)新能力方面進(jìn)行探索。
創(chuàng)新能力;數(shù)學(xué)建模;研究性學(xué)習(xí)。
《全日制普通高級中學(xué)數(shù)學(xué)教學(xué)大綱(試驗(yàn)修訂版)》對學(xué)生提出新的教學(xué)要求,要求學(xué)生:
(1)學(xué)會提出問題和明確探究方向;
(2)體驗(yàn)數(shù)學(xué)活動的過程;
(3)培養(yǎng)創(chuàng)新精神和應(yīng)用能力。
其中,創(chuàng)新意識與實(shí)踐能力是新大綱中最突出的特點(diǎn)之一,數(shù)學(xué)學(xué)習(xí)不僅要在數(shù)學(xué)基礎(chǔ)知識,基本技能和思維能力,運(yùn)算能力,空間想象能力等方面得到訓(xùn)練和提高,而且在應(yīng)用數(shù)學(xué)分析和解決實(shí)際問題的能力方面同樣需要得到訓(xùn)練和提高,而培養(yǎng)學(xué)生的分析和解決實(shí)際問題的能力僅僅靠課堂教學(xué)是不夠的,必須要有實(shí)踐、培養(yǎng)學(xué)生的創(chuàng)新意識和實(shí)踐能力是數(shù)學(xué)教學(xué)的一個重要目的和一條基本原則,要使學(xué)生學(xué)會提出問題并明確探究方向,能夠運(yùn)用已有的知識進(jìn)行交流,并將實(shí)際問題抽象為數(shù)學(xué)問題,就必須建立數(shù)學(xué)模型,從而形成比較完整的數(shù)學(xué)知識結(jié)構(gòu)。
數(shù)學(xué)模型是數(shù)學(xué)知識與數(shù)學(xué)應(yīng)用的橋梁,研究和學(xué)習(xí)數(shù)學(xué)模型,能幫助學(xué)生探索數(shù)學(xué)的應(yīng)用,產(chǎn)生對數(shù)學(xué)學(xué)習(xí)的興趣,培養(yǎng)學(xué)生的創(chuàng)新意識和實(shí)踐能力,加強(qiáng)數(shù)學(xué)建模教學(xué)與學(xué)習(xí)對學(xué)生的智力開發(fā)具有深遠(yuǎn)的意義,現(xiàn)就如何加強(qiáng)高中數(shù)學(xué)建模教學(xué)談幾點(diǎn)體會。
教材的每一章都由一個有關(guān)的實(shí)際問題引入,可直接告訴學(xué)生,學(xué)了本章的教學(xué)內(nèi)容及方法后,這個實(shí)際問題就能用數(shù)學(xué)模型得到解決,這樣,學(xué)生就會產(chǎn)生創(chuàng)新意識,對新數(shù)學(xué)模型的渴求,實(shí)踐意識,學(xué)完要在實(shí)踐中試一試。
這是培養(yǎng)創(chuàng)新意識及實(shí)踐能力的好時(shí)機(jī)要注意引導(dǎo),對所考察的實(shí)際問題進(jìn)行抽象分析,建立相應(yīng)的數(shù)學(xué)模型,并通過新舊兩種思路方法,提出新知識,激發(fā)學(xué)生的知欲,如不可挫傷學(xué)生的積極性,失去“亮點(diǎn)”。
這樣通過章前問題教學(xué),學(xué)生明白了數(shù)學(xué)就是學(xué)習(xí),研究和應(yīng)用數(shù)學(xué)模型,同時(shí)培養(yǎng)學(xué)生追求新方法的意識及參與實(shí)踐的意識。因此,要重視章前問題的教學(xué),還可據(jù)市場經(jīng)濟(jì)的建設(shè)與發(fā)展的需要及學(xué)生實(shí)踐活動中發(fā)現(xiàn)的問題,補(bǔ)充一些實(shí)例,強(qiáng)化這方面的教學(xué),使學(xué)生在日常生活及學(xué)習(xí)中重視數(shù)學(xué),培養(yǎng)學(xué)生數(shù)學(xué)建模意識。
學(xué)習(xí)幾何、三角的測量問題,使學(xué)生多方面全方位地感受數(shù)學(xué)建模思想,讓學(xué)生認(rèn)識更多現(xiàn)在數(shù)學(xué)模型,鞏固數(shù)學(xué)建模思維過程、教學(xué)中對學(xué)生展示建模的如下過程:
現(xiàn)實(shí)原型問題
數(shù)學(xué)模型
數(shù)學(xué)抽象
簡化原則
演算推理
現(xiàn)實(shí)原型問題的解
數(shù)學(xué)模型的解
反映性原則
返回解釋
列方程解應(yīng)用題體現(xiàn)了在數(shù)學(xué)建模思維過程,要據(jù)所掌握的信息和背景材料,對問題加以變形,使其簡單化,以利于解答的思想。且解題過程中重要的步驟是據(jù)題意更出方程,從而使學(xué)生明白,數(shù)學(xué)建模過程的重點(diǎn)及難點(diǎn)就是據(jù)實(shí)際問題特點(diǎn),通過觀察、類比、歸納、分析、概括等基本思想,聯(lián)想現(xiàn)成的數(shù)學(xué)模型或變換問題構(gòu)造新的數(shù)學(xué)模型來解決問題。如利息(復(fù)利)的數(shù)列模型、利潤計(jì)算的方程模型決策問題的函數(shù)模型以及不等式模型等。
高中新大綱要求每學(xué)期至少安排一個研究性課題,就是為了培養(yǎng)學(xué)生的數(shù)學(xué)建模能力,如“數(shù)列”章中的“分期付款問題”、“平面向是‘章中’向量在物理中的應(yīng)用”等,同時(shí),還可設(shè)計(jì)類似利潤調(diào)查、洽談、采購、銷售等問題。設(shè)計(jì)了如下研究性問題。
分析:這是一個確定人口增長模型的問題,為使問題簡化,應(yīng)作如下假設(shè):
(1)該國的政治、經(jīng)濟(jì)、社會環(huán)境穩(wěn)定;
(2)該國的人口增長數(shù)由人口的生育,死亡引起;
(3)人口數(shù)量化是連續(xù)的?;谏鲜黾僭O(shè),我們認(rèn)為人口數(shù)量是時(shí)間函數(shù)。建模思路是根據(jù)給出的數(shù)據(jù)資料繪出散點(diǎn)圖,然后尋找一條直線或曲線,使它們盡可能與這些散點(diǎn)吻合,該直線或曲線就被認(rèn)為近似地描述了該國人口增長規(guī)律,從而進(jìn)一步作出預(yù)測。
通過上題的研究,既復(fù)習(xí)鞏固了函數(shù)知識更培養(yǎng)了學(xué)生的數(shù)學(xué)建模能力和實(shí)踐能力及創(chuàng)新意識。在日常教學(xué)中注意訓(xùn)練學(xué)生用數(shù)學(xué)模型來解決現(xiàn)實(shí)生活問題;培養(yǎng)學(xué)生做生活的有心人及生活中“數(shù)”意識和觀察實(shí)踐能力,如記住一些常用及常見的數(shù)據(jù),如:人行車、自行車的速度,自己的身高、體重等。利用學(xué)校條件,組織學(xué)生到操場進(jìn)行實(shí)習(xí)活動,活動一結(jié)束,就回課堂把實(shí)際問題化成相應(yīng)的數(shù)學(xué)模型來解決。如:推鉛球的角度與距離關(guān)系;全班同學(xué)手拉手圍成矩形圈,怎樣圍使圍成的面積最大等,用磚塊搭成多米諾牌骨等。
由于數(shù)學(xué)模型這一思想方法幾乎貫穿于整個中小學(xué)數(shù)學(xué)學(xué)習(xí)過程之中,小學(xué)解算術(shù)運(yùn)用題中學(xué)建立函數(shù)表達(dá)式及解析幾何里的軌跡方程等都孕育著數(shù)學(xué)模型的思想方法,熟練掌握和運(yùn)用這種方法,是培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)分析問題、解決問題能力的關(guān)鍵,我認(rèn)為這就要求培養(yǎng)學(xué)生以下幾點(diǎn)能力,才能更好的完善數(shù)學(xué)建模思想:
(1)理解實(shí)際問題的能力;
(2)洞察能力,即關(guān)于抓住系統(tǒng)要點(diǎn)的能力;
(3)抽象分析問題的能力;
(5)運(yùn)用數(shù)學(xué)知識的能力;
(6)通過實(shí)際加以檢驗(yàn)的能力。
只有各方面能力加強(qiáng)了,才能對一些知識觸類旁通,舉一反三,化繁為簡,如下例就要用到各種能力,才能順利解出。
例2:解方程組
x+y+z=1
(1)x2+y2+z2=1/3
(2)x3+y3+z3=1/9
(3)分析:本題若用常規(guī)解法求相當(dāng)繁難,仔細(xì)觀察題設(shè)條件,挖掘隱含信息,聯(lián)想各種知識,即可構(gòu)造各種等價(jià)數(shù)學(xué)模型解之。
t3-t2+1/3t-1/27=0
(4)函數(shù)模型:
由(1)(2)知若以xz(x+y+z)為一次項(xiàng)系數(shù),(x2+y2+z2)為常數(shù)項(xiàng),則以3=(12+12+12)為二次項(xiàng)系數(shù)的二次函f(x)=(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+(t-z)2為完全平方函數(shù)3(t-1/3)2,從而有t-x=t-y=t-z,而x=y=z再由(1)得x=y=z=1/3,也適合(3)。
平面解析模型
方程(1)(2)有實(shí)數(shù)解的充要條件是直線x+y=1-z與圓x2+y2=1/3-z2有公共點(diǎn)后者有公共點(diǎn)的充要條件是圓心(o、o)到直線x+y的距離不大于半徑。
總之,只要教師在教學(xué)中通過自學(xué)出現(xiàn)的實(shí)際的問題,根據(jù)當(dāng)?shù)丶皩W(xué)生的實(shí)際,使數(shù)學(xué)知識與生活、生產(chǎn)實(shí)際聯(lián)系起來,就能增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)模型解決實(shí)際問題的意識,從而提高學(xué)生的創(chuàng)新意識與實(shí)踐能力。
數(shù)學(xué)建模論文篇三
“摘要”是對整篇論文的縮寫,建立在通讀全文、理解全文的基礎(chǔ)之上。評審專家評閱論文時(shí),總是先看摘要,摘要給專家留下第一印象,是評獎的敲門磚?!罢卑?問題背景,要達(dá)到什么目標(biāo),解決問題的思路、方法和步驟,模型的主要內(nèi)容、算法和結(jié)論,模型的特色。好的“摘要”能很快吸引評審專家的注意力,它建立在多次修改、反復(fù)推敲的基礎(chǔ)之上,具有統(tǒng)攬全文、層次分明、重點(diǎn)突出、文筆流暢的特點(diǎn)。
“問題提出”也可寫作“問題重述”。是將競賽試題所給定的問題背景和解題要求用論文書寫者自己的語言重新表述。在美國的數(shù)學(xué)建模競賽中,這一部分稱為background或者introduction。
任何問題的求解都有它的背景和適用范圍,建模試題來自于現(xiàn)實(shí)問題,同樣受到各種外在因素的約束?!澳P图僭O(shè)”就是界定一個范圍,或給出幾個約束條件,一使得問題的解決過程不至于太復(fù)雜,二使得其他人在使用該模型時(shí)知曉它的適用范圍。“模型假設(shè)”不是憑空臆造的,是在建立模型的過程中挖掘、提煉出來的。
數(shù)學(xué)符號是數(shù)學(xué)語言的基本元素,具有抽象性、準(zhǔn)確性、簡潔性的特點(diǎn)。數(shù)學(xué)模型由數(shù)學(xué)符號組成,模型的求解通過符號的運(yùn)算來完成??梢?,在建立數(shù)學(xué)模型時(shí)根據(jù)需要隨時(shí)引入必要的數(shù)學(xué)符號是多么重要的事情。根據(jù)競賽要求,在建立模型的過程中所引入的數(shù)學(xué)符號要在本模塊給出說明,最好的說明方式是列一個表格。
眾所周知,解決數(shù)學(xué)問題最難、最重要的一步就是明確解題思路,確定解題方法。而“分析”,則是邁出這一步的關(guān)鍵。數(shù)學(xué)建模也這樣。建模試題往往由幾個子問題組成,這時(shí)的“問題分析”既要有全局分析,也要有局部分析。“問題分析”包括:分析解決該問題需要用到哪些專業(yè)背景知識;分析解決問題的切入點(diǎn)、重點(diǎn)和難點(diǎn);分析解決問題的思路、方法、工具和步驟。這樣的分析對于“如何建立模型?采用哪些數(shù)學(xué)理論或公式?怎樣求解?會遇到哪些困難?”具有指導(dǎo)作用。
“模型建立”就是將原問題抽象成數(shù)學(xué)的表示式,主要步驟:
第一步,根據(jù)問題的實(shí)際背景和專業(yè)背景,選擇適當(dāng)?shù)臄?shù)學(xué)理論或工具。例如,如果是變化率問題,則考慮借助于導(dǎo)數(shù)或微分方程的手段;如果涉及面積、體積、曲線弧長、功、流量等幾何量或物理量,則考慮運(yùn)用積分元素法,將問題轉(zhuǎn)化為定積分、或重積分、或曲線曲面積分;如果是隨機(jī)數(shù)據(jù)的處理,則考慮統(tǒng)計(jì)分析的方法。
第二步,確定常量、變量,用符號來表示這些量。
第三步,建立數(shù)學(xué)模型,即建立常量、變量之間的關(guān)系。這種關(guān)系可以是方程、函數(shù)或表格。
少數(shù)模型可能是簡單的數(shù)學(xué)式子,求解起來比較容易。有些模型雖然也可用數(shù)學(xué)式子表示,但其中含有難以析出的參數(shù),求解很困難,有的模型面對的就是一堆數(shù)據(jù),對于這兩種情形,就需要借助于軟件matlab,mathematic,maple,sas,spss中的某一個編程求解。
數(shù)學(xué)建模競賽的題目來自于科技、工程、經(jīng)濟(jì)、社會等領(lǐng)域的實(shí)際問題。由于問題的復(fù)雜性和方法的局限性,所建立的數(shù)學(xué)模型與實(shí)際情況之間會有差距,模型可靠性的檢驗(yàn)成為必然。為了檢驗(yàn)提交的數(shù)學(xué)模型與實(shí)際情況吻合的程度,競賽題中往往會提供一些來自于背景問題的實(shí)驗(yàn)數(shù)據(jù)?!澳P蜋z驗(yàn)”就是將給定的數(shù)據(jù)代入模型,計(jì)算相對誤差和絕對誤差,如果誤差較大,就要返回去調(diào)整模型以提高可靠性。
該標(biāo)題也可寫成“模型的優(yōu)缺點(diǎn)分析”。分析模型有哪些優(yōu)點(diǎn),缺點(diǎn)是什么。也有人將這里的標(biāo)題改寫為“模型評價(jià)、推廣與改進(jìn)”。其中的“推廣”是將前述“模型假設(shè)”中的某些條件適當(dāng)放寬,看看結(jié)果會怎樣?!案倪M(jìn)”是指對模型或算法做出某種改進(jìn)。
列式參考的主要文獻(xiàn)。
詳細(xì)的軟件程序、程序運(yùn)算過程、運(yùn)算結(jié)果;用于模型檢驗(yàn)的數(shù)據(jù)表格;其他不宜放在正文中的數(shù)據(jù)表格。
數(shù)學(xué)建模論文篇四
大部分?jǐn)?shù)學(xué)知識是抽象的,概念比較枯燥,造成學(xué)生學(xué)習(xí)困難,而數(shù)學(xué)建模的運(yùn)用,在很大程度上可以將抽象的數(shù)學(xué)知識轉(zhuǎn)化成實(shí)體模型,讓學(xué)生更容易理解和學(xué)習(xí)數(shù)學(xué)知識。教師要做的就是了解并掌握數(shù)學(xué)建模的方法,并且把這種教學(xué)方法運(yùn)用到數(shù)學(xué)教學(xué)中。
對教師來說,發(fā)現(xiàn)好的教學(xué)方法不是最重要的,而是如何把方法與教學(xué)結(jié)合起來。通過對數(shù)學(xué)建模的長期研究和實(shí)踐應(yīng)用,筆者總結(jié)了數(shù)學(xué)建模的概念以及運(yùn)用策略。
一、數(shù)學(xué)建模的概念
想要更好地運(yùn)用數(shù)學(xué)建模,首先要了解什么是數(shù)學(xué)建模??梢哉f,數(shù)學(xué)建模就像一面鏡子,可以使數(shù)學(xué)抽象的影像產(chǎn)生與之對應(yīng)的具體化物象。
二、在小學(xué)數(shù)學(xué)教學(xué)中運(yùn)用數(shù)學(xué)建模的策略
1.根據(jù)事物之間的共性進(jìn)行數(shù)學(xué)建模
想要運(yùn)用數(shù)學(xué)建模,首先要對建模對象有一定的感知。教師要創(chuàng)造有利的條件,促使學(xué)生感知不同事物之間的共性,然后進(jìn)行數(shù)學(xué)建模。
教師應(yīng)做好建模前的指導(dǎo)工作,為學(xué)生的數(shù)學(xué)建模做好鋪墊,而學(xué)生要學(xué)會嘗試自己去發(fā)現(xiàn)事物的共性,爭取將事物的共性完美地運(yùn)用到數(shù)學(xué)建模中。在建模過程中,教師要引導(dǎo)學(xué)生把新知識和舊知識結(jié)合起來的作用,將原來學(xué)習(xí)中發(fā)現(xiàn)的好方法運(yùn)用到新知識的學(xué)習(xí)、新數(shù)學(xué)模型的構(gòu)建中,降低新的數(shù)學(xué)建模的難度,提高學(xué)生數(shù)學(xué)建模的成功率。如在教學(xué)《圖形面積》時(shí),教師可以利用不同的圖形模板,讓學(xué)生了解不同圖形的面積構(gòu)成,尋找不同圖形面積的差異以及圖形之間的共性。這樣直觀地向?qū)W生展示圖形的變化,可以加深學(xué)生對知識的理解,提高學(xué)生的學(xué)習(xí)效率。
2.認(rèn)識建模思想的本質(zhì)
建模思想與數(shù)學(xué)的本質(zhì)緊密相連,它不是獨(dú)立存在于數(shù)學(xué)教學(xué)之外的。所以在數(shù)學(xué)建模過程中,教師要幫助學(xué)生正確認(rèn)識數(shù)學(xué)建模的本質(zhì),將數(shù)學(xué)建模與數(shù)學(xué)教學(xué)有機(jī)結(jié)合起來,提高學(xué)生解決問題的能力,讓學(xué)生真正具備使用數(shù)學(xué)建模的能力。
建模過程并不是獨(dú)立于數(shù)學(xué)教學(xué)之外的,它和數(shù)學(xué)的教學(xué)過程緊密相連。數(shù)學(xué)建模是使人對數(shù)學(xué)抽象化知識進(jìn)行具體認(rèn)識的工具,是運(yùn)用數(shù)學(xué)建模思想解決數(shù)學(xué)難題的過程。因此,教師要將它和數(shù)學(xué)教學(xué)組成一個有機(jī)的整體,不僅要幫助學(xué)生完成建模,更要帶領(lǐng)學(xué)生認(rèn)識數(shù)學(xué)建模的本質(zhì),領(lǐng)悟數(shù)學(xué)建模思想的真諦,并逐漸引導(dǎo)學(xué)生使用數(shù)學(xué)建模解決數(shù)學(xué)學(xué)習(xí)過程中遇到的問題。
3.發(fā)揮教材在數(shù)學(xué)建模上的作用
教材是最基礎(chǔ)的教學(xué)工具,在數(shù)學(xué)教材中有很多典型案例可以利用在數(shù)學(xué)建模上,其中很大一部分來源于生活,更易于小學(xué)生學(xué)習(xí)和理解,有助于學(xué)生構(gòu)建數(shù)學(xué)建模思想。教師要利用好教材,培養(yǎng)學(xué)生的建模能力,幫助學(xué)生建造更易于理解的數(shù)學(xué)模型,從而提高學(xué)生的學(xué)習(xí)效率。如在教學(xué)加減法時(shí),教材上會有很多數(shù)蘋果、香蕉的例題,這些就是很好的數(shù)學(xué)模型,因?yàn)橘N近生活,可以激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生數(shù)學(xué)建模的能力,所以教師應(yīng)該深入研究教材。
數(shù)學(xué)建模是一種很好的數(shù)學(xué)教學(xué)方法,教師要充分利用這種教學(xué)方法,真正做到實(shí)踐與理論完美結(jié)合。
數(shù)學(xué)建模論文篇五
作為工科類大學(xué)公共課的一種,高等數(shù)學(xué)在學(xué)生思維訓(xùn)練上的培養(yǎng)、訓(xùn)練數(shù)學(xué)思維等上發(fā)揮著重要的做用。進(jìn)入新世紀(jì)后素質(zhì)教育思想被人們越來越重視,如果還使用傳統(tǒng)的教育教學(xué)方法,會讓學(xué)生失去學(xué)習(xí)高等數(shù)學(xué)的積極性和興趣。以現(xiàn)教育技術(shù)為基礎(chǔ)的數(shù)學(xué)建模,在實(shí)際問題和理論之間架起溝通的橋梁。在實(shí)際教學(xué)的過程中,高數(shù)老師以課后實(shí)驗(yàn)著手,在高等數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模思想,使用數(shù)學(xué)建模解決實(shí)際問題。
(一)教學(xué)觀念陳舊化
就當(dāng)前高等數(shù)學(xué)的教育教學(xué)而言,高數(shù)老師對學(xué)生的計(jì)算能力、思考能力以及邏輯思維能力過于重視,一切以課本為基礎(chǔ)開展教學(xué)活動。作為一門充滿活力并讓人感到新奇的學(xué)科,由于教育觀念和思想的落后,課堂教學(xué)之中沒有穿插應(yīng)用實(shí)例,在工作的時(shí)候?qū)W生不知道怎樣把問題解決,工作效率無法進(jìn)一步提升,不僅如此,陳舊的教學(xué)理念和思想讓學(xué)生漸漸的失去學(xué)習(xí)的興趣和動力。
(二)教學(xué)方法傳統(tǒng)化
教學(xué)方法的優(yōu)秀與否在學(xué)生學(xué)習(xí)的過程中發(fā)揮著重要的作用,也直接影響著學(xué)生的學(xué)習(xí)成績。一般高數(shù)老師在授課的時(shí)候都是以課本的順次進(jìn)行,也就意味著老師“由定義到定理”、“由習(xí)題到練習(xí)”,這種默守陳規(guī)的教學(xué)方式無法為學(xué)生營造活躍的學(xué)習(xí)氛圍,讓學(xué)生獨(dú)自學(xué)習(xí)、思考的能力進(jìn)一步下降。這就要求教師致力于和諧課堂氛圍營造以及使用新穎的教育教學(xué)方法,讓學(xué)生在課堂中主動參與學(xué)習(xí)。
對學(xué)生的想象力、觀察力、發(fā)現(xiàn)、分析并解決問題的能力進(jìn)行培養(yǎng)的過程中,數(shù)學(xué)建模發(fā)揮著重要的作用。最近幾年,國內(nèi)出現(xiàn)很多以數(shù)學(xué)建模為主體的賽事活動以及教研活動,其在學(xué)生學(xué)習(xí)興趣的提升、激發(fā)學(xué)生主動學(xué)習(xí)的積極性上扮演著重要的角色,發(fā)揮著突出的作用,在高等數(shù)學(xué)教學(xué)中引入數(shù)學(xué)建模還能培養(yǎng)學(xué)生不畏困難的品質(zhì),培養(yǎng)踏實(shí)的工作精神,在協(xié)調(diào)學(xué)生學(xué)習(xí)的知識、實(shí)際應(yīng)用能力等上有突出的作用。雖然國內(nèi)高等院校大都開設(shè)了數(shù)學(xué)建模選修課或者培訓(xùn)班,但是由于課程的要求和學(xué)生的認(rèn)知水平差異較大,所以課程無法普及為大眾化的教育。如今,高等院校都在積極的尋找一種載體,對學(xué)生的整體素質(zhì)進(jìn)行培養(yǎng),提升學(xué)生的創(chuàng)新精神以及創(chuàng)造力,讓學(xué)生滿足社會對復(fù)合型人才的需求,而最好的載體則是高等數(shù)學(xué)。
高等數(shù)學(xué)作為工科類學(xué)生的一門基礎(chǔ)課,由于其必修課的性質(zhì),把數(shù)學(xué)建模引入高等數(shù)學(xué)課堂中具有較廣的影響力。把數(shù)學(xué)建模思想滲入高等數(shù)學(xué)教學(xué)中,不僅能讓數(shù)學(xué)知識的本來面貌得以還原,更讓學(xué)生在日常中應(yīng)用數(shù)學(xué)知識的能力得到很好的培養(yǎng)。數(shù)學(xué)建模要求學(xué)生在簡化、抽象、翻譯部分現(xiàn)實(shí)世界信息的過程中使用數(shù)學(xué)的語言以及工具,把內(nèi)在的聯(lián)系使用圖形、表格等方式表現(xiàn)出來,以便于提升學(xué)生的表達(dá)能力。在實(shí)際的學(xué)習(xí)數(shù)學(xué)建模之后,需要檢驗(yàn)現(xiàn)實(shí)的信息,確定最后的結(jié)果是否正確,通過這一過程中的鍛煉,學(xué)生在分析問題的過程中可以主動地、客觀的辯證的運(yùn)用數(shù)學(xué)方法,最終得出解決問題的最好方法。因此,在高等數(shù)學(xué)教學(xué)中引入數(shù)學(xué)建模思想具有重要的意義。
(一)在公式中使用建模思想
在高數(shù)教材中占有重要位置的是公式,也是要求學(xué)生必須掌握的內(nèi)容之一。為了讓教師的教學(xué)效果進(jìn)一步提升,在課堂上老師不僅要讓學(xué)生對計(jì)算的技巧進(jìn)一步提升之余,還要和建模思想結(jié)合在一起,讓解題難度更容易,還讓課堂氛圍更活躍。為了讓學(xué)生對公式中使用建模思想理解的更透徹,老師還應(yīng)該結(jié)合實(shí)例開展教學(xué)。
(二)講解習(xí)題的時(shí)候使用數(shù)學(xué)模型的方式
課本例題使用建模思想進(jìn)行解決,老師通過對例題的講解,很好的講述使用數(shù)學(xué)建模解決問題的方式,讓學(xué)生清醒的認(rèn)識在解決問題的過程中怎樣使用數(shù)學(xué)建模。完成每章學(xué)習(xí)的內(nèi)容之后,充分的利用時(shí)間為學(xué)生解疑答惑,以學(xué)生所學(xué)的專業(yè)情況和學(xué)生水平的高低選擇合適的例題,完成建模、解決問題的全部過程,提升學(xué)生解決問題的效率。
(三)組織學(xué)生積極參加數(shù)學(xué)建模競賽
一般而言,在競賽中可以很好地鍛煉學(xué)生競爭意識以及獨(dú)立思考的能力。這就要求學(xué)校充分的利用資源并廣泛的宣傳,讓學(xué)生積極的參加競賽,在實(shí)踐中鍛煉學(xué)生的實(shí)際能力。在日常生活中使用數(shù)學(xué)建模解決問題,讓學(xué)生獨(dú)自思考,然后在競爭的過程中意識到自己的不足,今后也會努力學(xué)習(xí),改正錯誤,提升自身的能力。
高等數(shù)學(xué)主要對學(xué)生從理論學(xué)習(xí)走向解決實(shí)際問題的能力進(jìn)行培養(yǎng),在高等數(shù)學(xué)中應(yīng)用建模思想,促使學(xué)生對高數(shù)知識更充分的理解,學(xué)習(xí)的難度進(jìn)一步降低,提升應(yīng)用能力和探索能力。當(dāng)前,在高等教學(xué)過程中引入建模思想還存在一定的不足,需要高校高等數(shù)學(xué)老師進(jìn)行深入的研究和探索的同時(shí)也需要學(xué)生很好的配合,以便于今后的教學(xué)中進(jìn)一步提升教學(xué)的質(zhì)量。